
COMP9313: Big Data Management

Lecturer: Xin Cao
Course web site: http://www.cse.unsw.edu.au/~cs9313/

9.2

Chapter 9.2: Hive

9.3

Introduction to Hive

9.4

What is Hive?

❖ A data warehouse system for Hadoop that

➢ facilitates easy data summarization

➢ supports ad-hoc queries (still batch though…)

➢ created by Facebook

❖ A mechanism to project structure onto this data and query the data

using a SQL-like language – HiveQL

➢ Interactive-console –or-

➢ Execute scripts

➢ Kicks off one or more MapReduce jobs in the background

❖ An ability to use indexes, built-in user-defined functions

❖ Latest stable version: 3.1.3, works with Hadoop 3.x.y

9.5

Motivation of Hive

❖ Limitation of MR

➢ Have to use M/R model

➢ Not Reusable

➢ Error prone

➢ For complex jobs:

 Multiple stage of Map/Reduce functions

 Just like ask developer to write specified physical execution

plan in the database

❖ Hive intuitive

➢ Make the unstructured data looks like tables regardless how it

really lays out

➢ SQL based query can be directly against these tables

➢ Generate specified execution plan for this query

9.6

Hive Features

❖ A subset of SQL covering the most common statements

❖ Agile data types: Array, Map, Struct, and JSON objects

❖ User Defined Functions and Aggregates

❖ Regular Expression support

❖ MapReduce support

❖ JDBC support

❖ Partitions and Buckets (for performance optimization)

❖ Views and Indexes

9.7

Word Count using MapReduce

9.8

Word Count using Hive

create table doc(

text string

) row format delimited fields terminated by '\n' stored as textfile;

load data local inpath '/home/Words' overwrite into table doc;

SELECT word, COUNT(*) FROM (SELECT explode(split(text, ' '))

AS word FROM doc) wTable GROUP BY word;

9.9

Word Count using Hive

create table doc(

text string

) row format delimited fields terminated by '\n' stored as textfile;

load data local inpath '/home/Words' overwrite into table doc;

SELECT word, COUNT(*) FROM doc LATERAL VIEW

explode(split(text, ' ')) wTable as word GROUP BY word;

9.10

Architecture of Hive

9.11

Architecture of Hive

Driver
(Compiler, Optimizer, Executor)

Command Line Interface
Web
Interface Thrift Server

Metastore

JDBC ODBC

❖ Metastore

➢ The component stores the system catalog and meta data about

tables, columns, partitions etc.

➢ Stored in a relational RDBMS (built-in Derby)

9.12

Architecture of Hive

❖ Driver: manages the lifecycle of a HiveQL statement as it moves

through Hive.

➢ Query Compiler: compiles HiveQL into map/reduce tasks

➢ Optimizer: generate the best execution plan

➢ Execution Engine: executes the tasks produced by the compiler in

proper dependency order. The execution engine interacts with the

underlying Hadoop instance.

Command Line Interface
Web
Interface Thrift Server

Metastore

JDBC ODBC

Driver
(Compiler, Optimizer, Executor)

9.13

Architecture of Hive

Driver
(Compiler, Optimizer, Executor)

Command Line Interface
Web
Interface

Metastore

JDBC ODBC

Thrift Server

❖ Thrift Server

➢ Cross-language support

➢ Provides a thrift interface and a JDBC/ODBC server and provides

a way of integrating Hive with other applications.

9.14

Architecture of Hive

Driver
(Compiler, Optimizer, Executor)

Command Line Interface
Web
Interface Thrift Server

Metastore

JDBC ODBC

❖ Client Components

➢ Including Command Line Interface(CLI), the web UI and

JDBC/ODBC driver.

9.15

Hive Installation and Configuration

❖ Download at: https://hive.apache.org/downloads.html

❖ The latest stable version: 3.1.3

❖ Install:

❖ Environment variables in ~/.bashrc

❖ Create /tmp and /user/hive/warehouse and set them chmod g+w for

more than one user usage

❖ Run the schematool command to initialize Hive

❖ Start Hive Shell: $ hive

$ tar xzf apache-hive-3.1.3-bin.tar.gz

$ mv apache-hive-3.1.3-bin ~/hive

export HIVE_HOME=~/hive

export PATH=$HIVE_HOME/bin:$PATH

$ hdfs dfs -mkdir /tmp

$ hdfs dfs -mkdir /user/hive/warehouse

$ hdfs dfs -chmod g+w /tmp

$ hdfs dfs -chmod g+w /user/hive/warehouse

$ schematool -dbType derby -initSchema

https://hive.apache.org/downloads.html

9.16

Hive Type System

❖ Primitive types

➢ Integers: TINYINT, SMALLINT, INT, BIGINT.

➢ Boolean: BOOLEAN.

➢ Floating point numbers: FLOAT, DOUBLE.

➢ Fixed point numbers: DECIMAL

➢ String: STRING, CHAR, VARCHAR.

➢ Date and time types: TIMESTAMP, DATE

❖ Complex types

➢ Structs: c has type {a INT; b INT}. c.a to access the first field

➢ Maps: M['group'].

➢ Arrays: ['a', 'b', 'c'], A[1] returns 'b'.

❖ Example

➢ list< map<string, struct< p1:int,p2:int > > >

➢ Represents list of associative arrays that map strings to structs

that contain two ints

9.17

Hive Data Model

❖ Databases: Namespaces function to avoid naming conflicts for tables,

views, partitions, columns, and so on.

❖ Tables: Homogeneous units of data which have the same schema.

➢ Analogous to tables in relational DBs.

➢ Each table has corresponding directory in HDFS.

➢ An example table: page_views:

 timestamp—which is of INT type that corresponds to a UNIX

timestamp of when the page was viewed.

 userid —which is of BIGINT type that identifies the user who

viewed the page.

 page_url—which is of STRING type that captures the location

of the page.

 referer_url—which is of STRING that captures the location of

the page from where the user arrived at the current page.

 IP—which is of STRING type that captures the IP address from

where the page request was made.

9.18

Hive Data Model (Cont’)

❖ Partitions:

➢ Each Table can have one or more partition Keys which determines

how the data is stored

➢ Example:

 Given the table page_views, we can define two partitions a

date_partition of type STRING and country_partition of type

STRING

 All "US" data from "2009-12-23" is a partition of the

page_views table

➢ Partition columns are virtual columns, they are not part of the data

itself but are derived on load

➢ It is the user's job to guarantee the relationship between partition

name and data content

❖ Buckets: Data in each partition may in turn be divided into Buckets

based on the value of a hash function of some column of the Table

➢ Example: the page_views table may be bucketed by userid

9.19

Data Model and Storage

Tables (dir)

Partitions (dir)

Buckets (file)

9.20

Create Table

❖ Syntax:

See full CREATE TABLE command at:

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL

CREATE TABLE [IF NOT EXISTS] [db_name.]table_name

[(col_name data_type [COMMENT col_comment], ...)]

[COMMENT table_comment]

[PARTITIONED BY (col_name data_type [COMMENT

col_comment], ...)]

[CLUSTERED BY (col_name, col_name, ...) [SORTED BY

(col_name [ASC|DESC], ...)] INTO num_buckets

BUCKETS]

[ROW FORMAT row_format]

[STORED AS file_format]

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL

9.21

Hive SerDe

❖ SerDe is a short name for "Serializer and Deserializer.“

➢ Describe how to load the data from the file into a representation

that make it looks like a table;

❖ Hive uses SerDe (and FileFormat) to read and write table rows.

❖ HDFS files --> InputFileFormat --> <key, value> --> Deserializer -->

Row object

❖ Row object --> Serializer --> <key, value> --> OutputFileFormat -->

HDFS files

❖ More details see:

https://cwiki.apache.org/confluence/display/Hive/DeveloperGuide#Dev

eloperGuide-HiveSerDe

https://cwiki.apache.org/confluence/display/Hive/DeveloperGuide#DeveloperGuide-HiveSerDe
https://cwiki.apache.org/confluence/display/Hive/DeveloperGuide#DeveloperGuide-HiveSerDe

9.22

Hive SerDe

row_format

: DELIMITED [FIELDS TERMINATED BY char [ESCAPED BY char]]

[COLLECTION ITEMS TERMINATED BY char]

[MAP KEYS TERMINATED BY char] [LINES TERMINATED BY char]

Default values: Ctrl+A, Ctrl+B, Ctrl+C, new line, respectively

file_format:

: SEQUENCEFILE

| TEXTFILE -- (Default, depending on hive.default.fileformat

configuration)

| RCFILE -- (Note: Available in Hive 0.6.0 and later)

| ORC -- (Note: Available in Hive 0.11.0 and later)

| PARQUET -- (Note: Available in Hive 0.13.0 and later)

| AVRO -- (Note: Available in Hive 0.14.0 and later)

| INPUTFORMAT input_format_classname OUTPUTFORMAT

output_format_classname

9.23

Create Table Example

❖ Example:

CREATE TABLE page_view(viewTime INT, userid BIGINT,

page_url STRING, referrer_url STRING,

ip STRING COMMENT 'IP Address of the User')

COMMENT 'This is the page view table'

PARTITIONED BY(dt STRING, country STRING)

CLUSTERED BY(userid) SORTED BY(viewTime)

INTO 32 BUCKETS

ROW FORMAT DELIMITED

FIELDS TERMINATED BY '\001'

COLLECTION ITEMS TERMINATED BY '\002'

MAP KEYS TERMINATED BY '\003'

 LINES TERMINATED BY '\n'

STORED AS TEXTFILE;

9.24

Browsing Tables and Partitions

❖ To list existing tables in the warehouse

➢ SHOW TABLES;

❖ To list tables with prefix 'page'

➢ SHOW TABLES 'page.*';

❖ To list partitions of a table

➢ SHOW PARTITIONS page_view;

❖ To list columns and column types of table.

➢ DESCRIBE page_view;

9.25

Alter Table/Partition/Column

❖ To rename existing table to a new name

➢ ALTER TABLE old_table_name RENAME TO new_table_name;

❖ To rename the columns of an existing table

➢ ALTER TABLE old_table_name REPLACE COLUMNS (col1

TYPE, ...);

❖ To add columns to an existing table

➢ ALTER TABLE tab1 ADD COLUMNS (c1 INT COMMENT 'a new

int column', c2 STRING DEFAULT 'def val');

❖ To rename a partition

➢ ALTER TABLE table_name PARTITION old_partition_spec

RENAME TO PARTITION new_partition_spec;

❖ To rename a column

➢ ALTER TABLE table_name CHANGE old_col_name

new_col_name column_type

❖ More details see:

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+D

DL#LanguageManualDDL-AlterTable

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL#LanguageManualDDL-AlterTable
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL#LanguageManualDDL-AlterTable

9.26

Drop Table/Partition

❖ To drop a table

➢ DROP TABLE [IF EXISTS] table_name

➢ Example:

 DROP TABLE page_view

❖ To drop a paritition

➢ ALTER TABLE table_name DROP [IF EXISTS] PARTITION

partition_spec[, PARTITION partition_spec, ...]

➢ Example:

 ALTER TABLE pv_users DROP PARTITION (ds='2008-08-08')

9.27

Loading Data

❖ Hive does not do any transformation while loading data into tables.

Load operations are currently pure copy/move operations that move

datafiles into locations corresponding to Hive tables.

❖ Syntax:

➢ Load data from a file in the local files system

 LOAD DATA LOCAL INPATH /tmp/pv_2008-06-08_us.txt

INTO TABLE page_view PARTITION(date='2008-06-08',

country='US')

➢ Load data from a file in HDFS

 LOAD DATA INPATH '/user/data/pv_2008-06-08_us.txt' INTO

TABLE page_view PARTITION(date='2008-06-08',

country='US')

➢ The input data format must be the same as the table format!

LOAD DATA [LOCAL] INPATH 'filepath' [OVERWRITE] INTO

TABLE tablename [PARTITION (partcol1=val1, partcol2=val2 ...)]

9.28

Insert Data

❖ Insert rows into a table:

➢ Syntax

❖ Inserting data into Hive Tables from queries

➢ Syntax

➢ Example:

INSERT OVERWRITE TABLE user_active

SELECT user.*

FROM user

WHERE user.active = 1;

INSERT INTO TABLE tablename [PARTITION (partcol1[=val1],

partcol2[=val2] ...)] VALUES values_row [, values_row ...]

INSERT INTO TABLE tablename [PARTITION (partcol1=val1,

partcol2=val2 ...)] select_statement FROM from_statement;

9.29

Update Data

❖ Syntax:

❖ Synopsis

➢ The referenced column must be a column of the table being

updated.

➢ The value assigned must be an expression that Hive supports in

the select clause. Thus arithmetic operators, UDFs, casts, literals,

etc. are supported. Subqueries are not supported.

➢ Only rows that match the WHERE clause will be updated.

➢ Partitioning columns cannot be updated.

➢ Bucketing columns cannot be updated.

UPDATE tablename SET column = value [, column = value ...] [WHERE expression]

9.30

Query Data

❖ Select Syntax:

SELECT [ALL | DISTINCT] select_expr, select_expr, ...

FROM table_reference

[WHERE where_condition]

[GROUP BY col_list]

[ORDER BY col_list]

[CLUSTER BY col_list

| [DISTRIBUTE BY col_list] [SORT BY col_list]

]

[LIMIT number]

9.31

Order, Sort, Cluster, and Distribute By

❖ Difference between Order By and Sort By

➢ The former guarantees total order in the output while the latter

only guarantees ordering of the rows within a reducer

❖ Cluster By

➢ Cluster By is a short-cut for both Distribute By and Sort By.

➢ Hive uses the columns in Distribute By to distribute the rows

among reducers. All rows with the same Distribute By columns will

go to the same reducer. However, Distribute By does not

guarantee clustering or sorting properties on the distributed keys.

x1

x2

x4

x3

x1

x1

x2

x4

x3

x1

x1

x2

x1

x4

x3

x1

x1

x2

x3

x4

Distribute By Cluster By

9.32

Query Examples

❖ Selects column 'foo' from all rows of partition ds=2008-08-15 of

the invites table. The results are not stored anywhere, but are

displayed on the console.

❖ Selects all rows from partition ds=2008-08-15 of the invites table into

an HDFS directory.

❖ Selects all rows from pokes table into a local directory.

hive> SELECT a.foo FROM invites a WHERE a.ds='2008-08-15';

hive> INSERT OVERWRITE DIRECTORY '/tmp/hdfs_out' SELECT

a.* FROM invites a WHERE a.ds='2008-08-15';

hive> INSERT OVERWRITE LOCAL DIRECTORY '/tmp/local_out'

SELECT a.* FROM pokes a;

9.33

Group By

❖ Count the number of distinct users by gender

❖ Multiple DISTINCT expressions in the same query is not allowed

INSERT OVERWRITE TABLE pv_gender_sum

SELECT pv_users.gender, count (DISTINCT pv_users.userid)

FROM pv_users

GROUP BY pv_users.gender;

INSERT OVERWRITE TABLE pv_gender_agg

SELECT pv_users.gender, count(DISTINCT pv_users.userid),

count(DISTINCT pv_users.ip)

FROM pv_users

GROUP BY pv_users.gender;

9.34

Joins

❖ Hive does not support join conditions that are not equality conditions

➢ it is very difficult to express such conditions as a map/reduce job

➢ SELECT a.* FROM a JOIN b ON (a.id = b.id)

➢ However, the following statement is not allowed:

 SELECT a.* FROM a JOIN b ON (a.id <> b.id)

❖ More than 2 tables can be joined in the same query.

➢ SELECT a.val, b.val, c.val FROM a JOIN b ON (a.key = b.key1)

JOIN c ON (c.key = b.key2)

❖ Example:

SELECT s.word, s.freq, k.freq

FROM shakespeare s

JOIN bible k ON (s.word =

k.word) WHERE s.freq >= 1

AND k.freq >= 1 ORDER BY

s.freq DESC LIMIT 10;

9.35

Behind the Scenes

SELECT s.word, s.freq, k.freq FROM shakespeare s

 JOIN bible k ON (s.word = k.word) WHERE s.freq >= 1 AND k.freq >= 1

 ORDER BY s.freq DESC LIMIT 10;

(TOK_QUERY (TOK_FROM (TOK_JOIN (TOK_TABREF shakespeare s) (TOK_TABREF bible k) (= (. (TOK_TABLE_OR_COL s)

word) (. (TOK_TABLE_OR_COL k) word)))) (TOK_INSERT (TOK_DESTINATION (TOK_DIR TOK_TMP_FILE)) (TOK_SELECT

(TOK_SELEXPR (. (TOK_TABLE_OR_COL s) word)) (TOK_SELEXPR (. (TOK_TABLE_OR_COL s) freq)) (TOK_SELEXPR (.

(TOK_TABLE_OR_COL k) freq))) (TOK_WHERE (AND (>= (. (TOK_TABLE_OR_COL s) freq) 1) (>= (. (TOK_TABLE_OR_COL k)

freq) 1))) (TOK_ORDERBY (TOK_TABSORTCOLNAMEDESC (. (TOK_TABLE_OR_COL s) freq))) (TOK_LIMIT 10)))

(one or more of MapReduce jobs)

(Abstract Syntax Tree)

9.36

Hive Operators and User-Defined

Functions (UDFs)
❖ Built-in operators:

➢ relational, arithmetic, logical, etc.

❖ Built-in functions:

➢ mathematical, date function, string function, etc.

❖ Built-in aggregate functions:

➢ max, min, count, etc.

❖ Built-in table-generating functions: transform a single input row to

multiple output rows

➢ explode(ARRAY): Returns one row for each element from the

array.

➢ explode(MAP): Returns one row for each key-value pair from the

input map with two columns in each row

❖ Create Custom UDFs

❖ More details see:

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+U

DF#LanguageManualUDF-explode

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+UDF#LanguageManualUDF-explode
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+UDF#LanguageManualUDF-explode

9.37

WordCount in Hive

❖ Create a table in Hive

❖ Load file into table

❖ Compute word count using select

➢ explode() takes in an array (or a map) as an input and outputs the

elements of the array (map) as separate rows.

➢ Lateral view is used in conjunction with user-defined table

generating functions such as explode()

➢ A lateral view first applies the UDTF to each row of base table and

then joins resulting output rows to form a virtual table

create table doc(

text string

) row format delimited fields terminated by '\n' stored as textfile;

load data local inpath '/home/Words' overwrite into table doc;

SELECT word, COUNT(*) FROM doc LATERAL VIEW

explode(split(text, ' ')) wTable as word GROUP BY word;

9.38

explode() Function

❖ explode() takes in an array (or a map) as an input and outputs the

elements of the array (map) as separate rows.

❖ The following will return a table of words in doc, with a single column

word

❖ The following will compute the frequency of each word

SELECT explode(split(text, ' ')) AS word FROM doc

SELECT word, COUNT(*)

FROM (SELECT explode(SPLIT(text, ' ')) AS word FROM doc) AS

words GROUP BY word;

9.39

Lateral View

❖ Lateral view is used in conjunction with user-defined table generating

functions such as explode()

❖ A lateral view first applies the UDTF (User Defined Tabular Function)

to each row of base table and then joins resulting output rows to form

a virtual table.

❖ Lateral View Syntax

➢ lateralView: LATERAL VIEW udtf(expression) tableAlias AS

columnAlias (’,’ columnAlias)*

➢ fromClause: FROM baseTable (lateralView)*

❖ Compare the two ways:

SELECT word, COUNT(*) FROM

(SELECT explode(SPLIT(text, ' ')) AS word FROM doc) AS words

GROUP BY word;

SELECT word, COUNT(*) FROM

doc LATERAL VIEW explode(split(text, ' ')) wTable as word

GROUP BY word;

9.40

Writing HIVE Scripts

❖ Rather than executing HQL statements one-by-one in a Hive shell,

you can bundle them into a script and execute them all together. This

is also a good way to save your statements, edit them, and run them

easily whenever you like.

❖ To execute the statements in the file, just enter the following

command in the terminal: hive -f frequency.hql

CREATE TABLE doc (

line STRING

)

ROW FORMAT DELIMITED

FIELDS TERMINATED BY '\n'

STORED AS textfile;

LOAD DATA LOCAL INPATH 'text.txt' OVERWRITE INTO TABLE

doc;

SELECT doc, COUNT(*)

FROM doc LATERAL VIEW EXPLODE(SPLIT(line, ' ')) words as

word GROUP BY word;

9.41

Example: Rank the Terms by Frequencies

❖ We use the ABC news dataset. The task is to use Hive to compute the

frequency for each term within each year, and then sort the result by

the year first, and then by the frequency in descending order. For the

terms with the same frequency, rank them in alphabetical order.

20030219,council chief executive fails to secure position

20030219,council welcomes ambulance levy decision

20030219,council welcomes insurance breakthrough

20030219,fed opp to re introduce national insurance

20040501,cowboys survive eels comeback

20040501,cowboys withstand eels fightback

20040502,castro vows cuban socialism to survive bush

20200401,coronanomics things learnt about how coronavirus economy

20200401,coronavirus at home test kits selling in the chinese community

20200401,coronavirus campbell remess streams bear making classes

20201015,coronavirus pacific economy foriegn aid china

20201016,china builds pig apartment blocks to guard against swine flu

9.42

Solution

CREATE TABLE abcnews (

 NewsDate STRING,

 Headline STRING

)

ROW FORMAT DELIMITED

FIELDS TERMINATED BY ','

LINES TERMINATED BY '\n'

STORED AS TEXTFILE;

LOAD DATA LOCAL INPATH 'abcnews.txt' OVERWRITE INTO TABLE abcnews;

CREATE VIEW year_terms AS SELECT substr(NewsDate, 0, 4) as year, term FROM

abcnews LATERAL VIEW EXPLODE (SPLIT(Headline, ' ')) terms AS term;

SELECT year,term,count(*) AS num FROM year_terms GROUP BY year,term;

CREATE VIEW termcount AS SELECT year,term,count(*) AS num FROM year_terms

GROUP BY year,term;

SELECT a.year, a.term FROM (select *, rank() over (ORDER BY year, num DESC, term)

FROM termcount) as a;

9.43

Pros/Cons

❖ Pros

➢ An easy way to process large scale data

➢ Support SQL-based queries

➢ Provide more user defined interfaces to extend

➢ Programmability

➢ Efficient execution plans for performance

➢ Interoperability with other databases

❖ Cons

➢ No easy way to append data

➢ Files in HDFS are immutable

9.44

Applications of Hive

❖ Log processing

➢ Daily Report

➢ User Activity Measurement

❖ Data/Text mining

➢ Machine learning (Training Data)

❖ Business intelligence

➢ Advertising Delivery

➢ Spam Detection

9.45

References

❖ https://cwiki.apache.org/confluence/display/Hive/Home#Home-

HiveDocumentation

❖ http://www.tutorialspoint.com/hive/

❖ Hadoop the Definitive Guide. Hive Chapter

https://cwiki.apache.org/confluence/display/Hive/Home#Home-HiveDocumentation
https://cwiki.apache.org/confluence/display/Hive/Home#Home-HiveDocumentation
http://www.tutorialspoint.com/hive/

End of Chapter 9.2

	Slide 1: COMP9313: Big Data Management Lecturer: Xin Cao Course web site: http://www.cse.unsw.edu.au/~cs9313/
	Slide 2
	Slide 3
	Slide 4: What is Hive?
	Slide 5: Motivation of Hive
	Slide 6: Hive Features
	Slide 7: Word Count using MapReduce
	Slide 8: Word Count using Hive
	Slide 9: Word Count using Hive
	Slide 10: Architecture of Hive
	Slide 11: Architecture of Hive
	Slide 12: Architecture of Hive
	Slide 13: Architecture of Hive
	Slide 14: Architecture of Hive
	Slide 15: Hive Installation and Configuration
	Slide 16: Hive Type System
	Slide 17: Hive Data Model
	Slide 18: Hive Data Model (Cont’)
	Slide 19: Data Model and Storage
	Slide 20: Create Table
	Slide 21: Hive SerDe
	Slide 22: Hive SerDe
	Slide 23: Create Table Example
	Slide 24: Browsing Tables and Partitions
	Slide 25: Alter Table/Partition/Column
	Slide 26: Drop Table/Partition
	Slide 27: Loading Data
	Slide 28: Insert Data
	Slide 29: Update Data
	Slide 30: Query Data
	Slide 31: Order, Sort, Cluster, and Distribute By
	Slide 32: Query Examples
	Slide 33: Group By
	Slide 34: Joins
	Slide 35: Behind the Scenes
	Slide 36: Hive Operators and User-Defined Functions (UDFs)
	Slide 37: WordCount in Hive
	Slide 38: explode() Function
	Slide 39: Lateral View
	Slide 40: Writing HIVE Scripts
	Slide 41: Example: Rank the Terms by Frequencies
	Slide 42: Solution
	Slide 43: Pros/Cons
	Slide 44: Applications of Hive
	Slide 45: References
	Slide 46: End of Chapter 9.2

