
COMP9313: Big Data Management

Lecturer: Xin Cao
Course web site: http://www.cse.unsw.edu.au/~cs9313/

5.2

Chapter 8.2: Spark IV

5.3

Spark GraphX

❖ GraphX is Apache Spark's API for graphs and graph-parallel

computation.

❖ At a high level, GraphX extends the Spark RDD by introducing a new

Graph abstraction: a directed multigraph with properties attached to

each vertex and edge

❖ To support graph computation, GraphX exposes a set of fundamental

operators (e.g., subgraph, joinVertices) as well as an optimized variant

of the Pregel API

❖ GraphX includes a growing collection of graph algorithms and builders

to simplify graph analytics tasks.

5.4

Graph-Parallel Computation

❖ The growing scale and importance of graph data has driven the

development of numerous new graph-parallel systems (e.g., Giraph

and GraphLab)

❖ These systems can efficiently execute sophisticated graph algorithms

orders of magnitude faster than more general data-parallel systems.

➢ Expose specialized APIs to simplify graph programming

5.5

Specialized Systems May Miss the Bigger Picture

❖ It is often desirable to be able to move between table and graph views

of the same physical data and to leverage the properties of each view

to easily and efficiently express computation

5.6

GraphX Motivation

❖ The goal of the GraphX project is to unify graph-parallel and data-

parallel computation in one system with a single composable API.

❖ The GraphX API enables users to view data both as graphs and as

collections (i.e., RDDs) without data movement or duplication.

5.7

GraphX Motivation

❖ Tables and Graphs are composable views of the same physical data

➢ Each view has its own operators that exploit the semantics of the

view to achieve efficient execution

5.8

View a Graph as a Table

5.9

Table Operators

❖ Table (RDD) operators are inherited from Spark:

map

filter

groupBy

sort

union

join

leftOuterJoin

rightOuterJoin

reduce

count

fold

reduceByKey

groupByKey

cogroup

cross

zip

sample

take

first

partitionBy

mapWith

pipe

save

...

5.10

The Property Graph

❖ The property graph is a directed multigraph with user defined objects

attached to each vertex and edge.

❖ A directed multigraph is a directed graph with potentially multiple

parallel edges sharing the same source and destination vertex

❖ The property graph is parameterized over the vertex (VD) and edge

(ED) types. These are the types of the objects associated with each

vertex and edge respectively.

❖ Each vertex is keyed by a unique 64-bit long identifier (VertexID).

Similarly, edges have corresponding source and destination vertex

identifiers.

❖ Logically the property graph corresponds to a pair of typed collections

(RDDs) encoding the properties for each vertex and edge.

class Graph[VD, ED] {
val vertices: VertexRDD[VD]
val edges: EdgeRDD[ED]

}

5.11

Example Property Graph

5.12

GraphX Example

❖ Import Spark and GraphX into your project

❖ We begin by creating the property graph from arrays of vertices and

edges

import org.apache.spark._
import org.apache.spark.graphx._
// To make some of the examples work we will also need RDD
import org.apache.spark.rdd.RDD

val vertexArray = Array(
(3L, ("rxin", "student")),
(7L, ("jgonzal", "postdoc")),
(5L, ("franklin", "prof")),
(2L, ("istoica", "prof"))

)
val edgeArray = Array(
Edge(3L, 7L, "collab"),
Edge(5L, 3L, "advisor"),
Edge(2L, 5L, "colleague"),
Edge(5L, 7L, "pi"),

)

5.13

Construct a Property Graph

❖ The most general method of constructing a property graph is to use

the Graph object

➢ Edges have a srcId and a dstId corresponding to the source and

destination vertex identifiers.

➢ In addition, the Edge class has an attr member which stores the

edge property

// Assume the SparkContext has already been constructed
val sc: SparkContext
// Create an RDD for the vertices
val users: RDD[(VertexId, (String, String))] =
sc.parallelize(vertexArray)

// Create an RDD for edges
val relationships: RDD[Edge[String]] =
sc.parallelize(edgeArray)

// Define a default user in case there are relationship with missing user
val defaultUser = ("John Doe", "Missing")
// Build the initial Graph
val graph = Graph(users, relationships, defaultUser)

5.14

Deconstruct a Property Graph

❖ In many cases we will want to extract the vertex and edge RDD views

of a graph

❖ The graph class contains members (graph.vertices and graph.edges)

to access the vertices and edges of the graph

➢ Note that graph.vertices returns an VertexRDD[(String,

String)] which extends RDD[(VertexId, (String, String))] and so we

use the scala case expression to deconstruct the tuple.

➢ graph.edges returns an EdgeRDD containing Edge[String]objects.

We could have also used the case class type constructor as in the

following:

graph.edges.filter { case Edge(src, dst, prop) => src > dst }.count

// Count all users which are postdocs
graph.vertices.filter { case (id, (name, pos)) => pos == "postdoc" }.count
// Count all the edges where src > dst
graph.edges.filter(e => e.srcId > e.dstId).count

5.15

Deconstruct a Property Graph

❖ Another example: use graph.vertices to display the names of the

users who are professors

➢ We first get the vertices who are professors. It can also be written

as: graph.vertices.filter(x => x._2._2==“prof”).collect

➢ Next, we print their names, which can also be written as:

……foreach(x=>println(x._2._1+" is Professor"))

graph.vertices.filter { case (id, (name, pos)) => pos == "prof"
}.collect.foreach { case (id, (name, age)) => println(s"$name is
Professor") }

5.16

Triplet View

❖ The triplet view logically joins the vertex and edge properties yielding

an RDD[EdgeTriplet[VD, ED]] containing instances of the EdgeTriplet

class

❖ This join can be expressed in the following SQL expression:

or graphically as:

SELECT src.id, dst.id, src.attr, e.attr, dst.attr
FROM edges AS e LEFT JOIN vertices AS src, vertices AS dst
ON e.srcId = src.Id AND e.dstId = dst.Id

5.17

EdgeTriplet class

❖ The EdgeTriplet class extends the Edge class by adding the srcAttr

and dstAttr members which contain the source and destination

properties respectively.

❖ We can use the triplet view of a graph to render a collection of strings

describing relationships between users.

// Constructed from above
val graph: Graph[(String, String), String]
// Use the triplets view to create an RDD of facts.
val facts: RDD[String] =
graph.triplets.map(triplet =>
triplet.srcAttr._1 + " is the " + triplet.attr + " of " +

triplet.dstAttr._1)
facts.collect.foreach(println(_))

5.18

Graph Operators

❖ Property graphs have a collection of basic operators that take user

defined functions and produce new graphs with transformed properties

and structure (like RDD operations).

class Graph[VD, ED] {

 // Information about the Graph

 val numEdges: Long

 val numVertices: Long

 val inDegrees: VertexRDD[Int]

 val outDegrees: VertexRDD[Int]

 val degrees: VertexRDD[Int]

// Views of the graph as collections

val vertices: VertexRDD[VD]

val edges: EdgeRDD[ED]

val triplets: RDD[EdgeTriplet[VD, ED]]

 // Transform vertex and edge attributes

 def mapVertices[VD2](map: (VertexID, VD) => VD2): Graph[VD2, ED]

 def mapEdges[ED2](map: Edge[ED] => ED2): Graph[VD, ED2]

 def mapTriplets[ED2](map: EdgeTriplet[VD, ED] => ED2): Graph[VD, ED2]

 // Modify the graph structure

 def reverse: Graph[VD, ED]

 def groupEdges(merge: (ED, ED) => ED): Graph[VD, ED]

 // …other operators…

}

5.19

Property Operators

❖ Like the RDD map operator, the property graph contains the following:

➢ Each of these operators yields a new graph with the vertex or

edge properties modified by the user defined map function.

➢ Note that in each case the graph structure is unaffected

➢ The second one can preserve the structural indices of the original

graph and would benefit from the GraphX system optimizations

class Graph[VD, ED] {
def mapVertices[VD2](map: (VertexId, VD) => VD2): Graph[VD2, ED]
def mapEdges[ED2](map: Edge[ED] => ED2): Graph[VD, ED2]
def mapTriplets[ED2](map: EdgeTriplet[VD, ED] => ED2): Graph[VD, ED2]

}

val newVertices = graph.vertices.map { case (id, attr) => (id,
mapUdf(id, attr)) }
val newGraph = Graph(newVertices, graph.edges)

val newGraph = graph.mapVertices((id, attr) => mapUdf(id, attr))

5.20

Structural Operators

❖ Currently GraphX supports only a simple set of commonly used

structural operators

➢ val graphR = graph.reverse

➢ val validGraph = graph.subgraph(vpred = (id, attr) => attr._2 !=

"prof")

class Graph[VD, ED] {
def reverse: Graph[VD, ED]
def subgraph(epred: EdgeTriplet[VD,ED] => Boolean,

vpred: (VertexId, VD) => Boolean): Graph[VD, ED]
def mask[VD2, ED2](other: Graph[VD2, ED2]): Graph[VD, ED]
def groupEdges(merge: (ED, ED) => ED): Graph[VD,ED]

}

5.21

Neighborhood Aggregation

❖ A key step in many graph analytics tasks is aggregating information

about the neighborhood of each vertex.

❖ The core aggregation operation in GraphX is aggregateMessages.

➢ A user-defined sendMsg function, to send messages for each

edge triplet in the graph

➢ A user-defined mergeMsg function, to aggregate those messages

at their destination vertex.

5.22

Neighborhood Aggregation

❖ We can use the aggregateMessages operator to compute the average

age of the more senior followers of each user

5.23

Pregel Operators

❖ The first argument list contains configuration parameters including the

initial message, the maximum number of iterations, and the edge

direction in which to send messages (by default along out edges).

❖ The second argument list contains the user defined functions for

receiving messages (the vertex program vprog), computing messages

(sendMsg), and combining messages mergeMsg.

def pregel[A]

 (initialMsg: A,

 maxIter: Int = Int.MaxValue,

 activeDir: EdgeDirection = EdgeDirection.Out)

 (vprog: (VertexId, VD, A) => VD,

 sendMsg: EdgeTriplet[VD, ED] => Iterator[(VertexId, A)],

 mergeMsg: (A, A) => A)

 : Graph[VD, ED] = {

 … …

 }

5.24

Pregel Introduction

5.25

Motivation of Pregel

❖ Many practical computing problems concern large graphs

❖ Single computer graph library does not scale

❖ MapReduce is ill-suited for graph processing

➢ Many iterations are needed for parallel graph processing

➢ Materializations of intermediate results at every MapReduce

iteration harm performance

Large graph data
Web graph

Transportation routes

Citation relationships

Social networks

Graph algorithms
PageRank

Shortest path

Connected components

Clustering techniques

5.26

Pregel

❖ Pregel: A System for Large-Scale Graph Processing (Google) -

Malewicz et al. SIGMOD 2010.

❖ Scalable and Fault-tolerant platform

❖ API with flexibility to express arbitrary algorithm

❖ Inspired by Valiant’s Bulk Synchronous Parallel model

➢ Leslie G. Valiant: A Bridging Model for Parallel Computation.

Commun. ACM 33 (8): 103-111 (1990)

❖ Vertex centric computation (Think like a vertex)

5.27

Bulk Synchronous Parallel Model (BSP)

❖ Processing: a series of supersteps

❖ Vertex: computation is defined to run on each vertex

❖ Superstep S: all vertices compute in parallel; each vertex v may

➢ receive messages sent to v from superstep S – 1;

➢ perform some computation: modify its states and the states of its

outgoing edges

➢ Send messages to other vertices (to be received in the next

superstep)

analogous to MapReduce rounds

Message passing

Vertex-centric, message passing

5.28

Pregel Computation Model

❖ Based on Bulk Synchronous Parallel (BSP)

➢ Computational units encoded in a directed graph

➢ Computation proceeds in a series of supersteps

➢ Message passing architecture

Input

Output

Supersteps
(a sequence of iterations)

5.29

Pregel Computation Model (Cont’)

Source: http://en.wikipedia.org/wiki/Bulk_synchronous_parallel

❖ Concurrent computation and Communication need not be ordered in

time

❖ Communication through message passing

http://en.wikipedia.org/wiki/Bulk_synchronous_parallel

5.30

Pregel Computation Model (Cont’)

❖ Superstep: the vertices compute in parallel

➢ Each vertex

 Receives messages sent in the previous superstep

 Executes the same user-defined function

 Modifies its value or that of its outgoing edges

 Sends messages to other vertices (to be received in the next

superstep)

 Votes to halt if it has no further work to do

➢ Termination condition

 All vertices are simultaneously inactive

 A vertex can choose to deactivate itself

 Is “woken up” if new messages received

State machine for a vertex

5.31

Superstep

❖ During a superstep, the following can happen in the framework:

➢ It receives and reads messages that are sent to v from the

previous superstep s-1.

➢ It applies a user-defined function f to each vertices in parallel, so f

essentially specifies the behaviour of a single vertex v at a single

superstep s.

➢ It can mutate the state of v.

➢ It can send messages to other vertices (typically along outgoing

edges) that the vertices will receive in the next superstep s+1.

❖ All communications are between supersteps s and s+1

5.32

Example: Find the minimum value in a graph

❖ The pseudo-code definition of f is also given above, it will:

➢ Set originalValue to the current value of the vertex.

➢ Mutate the value of the vertex to the minimum of all the incoming

messages and originalValue.

➢ If originalValue and value are the same, then we will render the

vertex inactive. Otherwise, send message out to all its outgoing

neighbours.

5.33

Superstep 0

5.34

Superstep 1

5.35

Superstep 2

5.36

Superstep 3

5.37

Single-Source Shortest Path (SSSP)

❖ Problem: find shortest path from a source node to one or more target

nodes

➢ Shortest might also mean lowest weight or cost

❖ Dijkstra’s Algorithm:

➢ For a given source node in the graph, the algorithm finds the

shortest path between that node and every other

5.38

Dijkstra’s Algorithm

5.39

Dijkstra’s Algorithm Example

0

10

5

2 3

2

1

9

7

4 6

Example from CLR

5.40

Dijkstra’s Algorithm Example

0

10

5

Example from CLR

10

5

2 3

2

1

9

7

4 6

5.41

Dijkstra’s Algorithm Example

0

8

5

14

7

Example from CLR

10

5

2 3

2

1

9

7

4 6

5.42

Dijkstra’s Algorithm Example

0

8

5

13

7

Example from CLR

10

5

2 3

2

1

9

7

4 6

5.43

Dijkstra’s Algorithm Example

0

8

5

9

7

1

Example from CLR

10

5

2 3

2

9

7

4 6

5.44

Dijkstra’s Algorithm Example

0

8

5

9

7

Example from CLR

10

5

2 3

2

1

9

7

4 6

Finish!

5.45

Example: SSSP – Parallel BFS in Pregel

45

0

10

5

2 3

2

1

9

7

4 6

Inactive Vertex

Active Vertex

Edge weight

Message

x

x

5.46

Example: SSSP – Parallel BFS in Pregel

46

0

10

5

2 3

2

1

9

7

4 6

10

5

5.47

Example: SSSP – Parallel BFS in Pregel

47

0

10

5

10

5

2 3

2

1

9

7

4 6

5.48

Example: SSSP – Parallel BFS in Pregel

48

0

10

5

10

5

2 3

2

1

9

7

4 6

11

7

12

8
14

5.49

Example: SSSP – Parallel BFS in Pregel

49

0

8

5

11

7

10

5

2 3

2

1

9

7

4 6

5.50

Example: SSSP – Parallel BFS in Pregel

50

0

8

5

11

7

10

5

2 3

2

1

9

7

4 6

9

14

13

1510

5.51

Example: SSSP – Parallel BFS in Pregel

51

0

8

5

9

7

10

5

2 3

2

1

9

7

4 6

5.52

Example: SSSP – Parallel BFS in Pregel

52

0

8

5

9

7

10

5

2 3

2

1

9

7

4 6

13

5.53

Example: SSSP – Parallel BFS in Pregel

53

0

8

5

9

7

10

5

2 3

2

1

9

7

4 6

5.54

Pregel Operator

❖ Notice that Pregel takes two argument lists

➢ The first argument list contains configuration parameters including

the initial message, the maximum number of iterations, and the

edge direction in which to send messages (by default along out

edges).

➢ The second argument list contains the user defined functions for

receiving messages (the vertex program vprog), computing

messages (sendMsg), and combining messages mergeMsg.

def pregel[A]

 (initialMsg: A,

 maxIter: Int = Int.MaxValue,

 activeDir: EdgeDirection = EdgeDirection.Out)

 (vprog: (VertexId, VD, A) => VD,

 sendMsg: EdgeTriplet[VD, ED] => Iterator[(VertexId, A)],

 mergeMsg: (A, A) => A)

 : Graph[VD, ED] = {

 … …

 }

5.55

Scala Currying

❖ Methods may define multiple parameter lists. When a method is called

with a fewer number of parameter lists, then this will yield a function

taking the missing parameter lists as its arguments.

❖ Results:

➢ nums.filter(modN(2)) = nums.filter(x => modN(2)(x))

➢ x is treated as the argument: List(2,4,6,8)

def modN(n: Int)(x: Int) = ((x % n) == 0)

val nums = List(1, 2, 3, 4, 5, 6, 7, 8)

nums.filter(modN(2))

5.56

Pregel Operator

Messages delivered from

vertices in the previous

superstep are combined

to a single message by a

custom mergeMsg function

The custom vprog method

decides how to update the

vertex data based on the

message received from

mergeMsg

The custom sendMsg

function decides which

vertices will receive

messages in the next

superstep

5.57

Find the minimum value in a graph

val initialMsg = 9999

def vprog(vertexId: VertexId, value: (Int, Int), message: Int): (Int, Int) =

{

if (message == initialMsg) value

else (message min value._1, value._1)

}

def sendMsg(triplet: EdgeTriplet[(Int, Int), Boolean]): Iterator[(VertexId,

Int)] = {

val sourceVertex = triplet.srcAttr

if (sourceVertex._1 == sourceVertex._2) Iterator.empty

else Iterator((triplet.dstId, sourceVertex._1))

}

def mergeMsg(msg1: Int, msg2: Int): Int = msg1 min msg2

val minGraph = graph.pregel(initialMsg)(vprog, sendMsg, mergeMsg)

5.58

Single Source Shortest Path

❖ vprog:

❖ sendMsg:

❖ mergeMsg:

❖ Full Pregel function call:

(id, dist, newDist) => math.min(dist, newDist)

triplet => {

 if (triplet.srcAttr + triplet.attr < triplet.dstAttr) {

 Iterator((triplet.dstId, triplet.srcAttr + triplet.attr))

 } else { Iterator.empty }

 }

(a, b) => math.min(a, b)

val initialGraph = graph.mapVertices((id, _) =>

 if (id == sourceId) 0.0 else Double.PositiveInfinity)

val sssp = initialGraph.pregel(Double.PositiveInfinity)(

 (id, dist, newDist) => math.min(dist, newDist), // Vertex Program

 triplet => { // Send Message

 if (triplet.srcAttr + triplet.attr < triplet.dstAttr) {

 Iterator((triplet.dstId, triplet.srcAttr + triplet.attr))

 } else { Iterator.empty }

 },

 (a, b) => math.min(a, b) // Merge Message

)

https://github.com/apache/sp

ark/blob/master/graphx/src/m

ain/scala/org/apache/spark/gr

aphx/lib/ShortestPaths.scala

or

https://spark.apache.org/docs

/latest/graphx-programming-

guide.html#pregel-api

https://github.com/apache/spark/blob/master/graphx/src/main/scala/org/apache/spark/graphx/lib/ShortestPaths.scala
https://github.com/apache/spark/blob/master/graphx/src/main/scala/org/apache/spark/graphx/lib/ShortestPaths.scala
https://github.com/apache/spark/blob/master/graphx/src/main/scala/org/apache/spark/graphx/lib/ShortestPaths.scala
https://github.com/apache/spark/blob/master/graphx/src/main/scala/org/apache/spark/graphx/lib/ShortestPaths.scala
https://spark.apache.org/docs/latest/graphx-programming-guide.html#pregel-api
https://spark.apache.org/docs/latest/graphx-programming-guide.html#pregel-api
https://spark.apache.org/docs/latest/graphx-programming-guide.html#pregel-api

5.59

References

❖ Spark GraphX guide: http://spark.apache.org/docs/latest/graphx-

programming-guide.html

❖ Graph Analytics with Graphx. https://github.com/databricks/spark-

training/blob/master/website/graph-analytics-with-graphx.md

❖ Spark GraphX in Action. Manning Publications

http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
https://github.com/databricks/spark-training/blob/master/website/graph-analytics-with-graphx.md
https://github.com/databricks/spark-training/blob/master/website/graph-analytics-with-graphx.md

End of Chapter 8.2

	Slide 1: COMP9313: Big Data Management Lecturer: Xin Cao Course web site: http://www.cse.unsw.edu.au/~cs9313/
	Slide 2
	Slide 3: Spark GraphX
	Slide 4: Graph-Parallel Computation
	Slide 5: Specialized Systems May Miss the Bigger Picture
	Slide 6: GraphX Motivation
	Slide 7: GraphX Motivation
	Slide 8: View a Graph as a Table
	Slide 9: Table Operators
	Slide 10: The Property Graph
	Slide 11: Example Property Graph
	Slide 12: GraphX Example
	Slide 13: Construct a Property Graph
	Slide 14: Deconstruct a Property Graph
	Slide 15: Deconstruct a Property Graph
	Slide 16: Triplet View
	Slide 17: EdgeTriplet class
	Slide 18: Graph Operators
	Slide 19: Property Operators
	Slide 20: Structural Operators
	Slide 21: Neighborhood Aggregation
	Slide 22: Neighborhood Aggregation
	Slide 23: Pregel Operators
	Slide 24
	Slide 25: Motivation of Pregel
	Slide 26: Pregel
	Slide 27: Bulk Synchronous Parallel Model (BSP)
	Slide 28: Pregel Computation Model
	Slide 29: Pregel Computation Model (Cont’)
	Slide 30: Pregel Computation Model (Cont’)
	Slide 31: Superstep
	Slide 32: Example: Find the minimum value in a graph
	Slide 33: Superstep 0
	Slide 34: Superstep 1
	Slide 35: Superstep 2
	Slide 36: Superstep 3
	Slide 37: Single-Source Shortest Path (SSSP)
	Slide 38: Dijkstra’s Algorithm
	Slide 39: Dijkstra’s Algorithm Example
	Slide 40: Dijkstra’s Algorithm Example
	Slide 41: Dijkstra’s Algorithm Example
	Slide 42: Dijkstra’s Algorithm Example
	Slide 43: Dijkstra’s Algorithm Example
	Slide 44: Dijkstra’s Algorithm Example
	Slide 45: Example: SSSP – Parallel BFS in Pregel
	Slide 46: Example: SSSP – Parallel BFS in Pregel
	Slide 47: Example: SSSP – Parallel BFS in Pregel
	Slide 48: Example: SSSP – Parallel BFS in Pregel
	Slide 49: Example: SSSP – Parallel BFS in Pregel
	Slide 50: Example: SSSP – Parallel BFS in Pregel
	Slide 51: Example: SSSP – Parallel BFS in Pregel
	Slide 52: Example: SSSP – Parallel BFS in Pregel
	Slide 53: Example: SSSP – Parallel BFS in Pregel
	Slide 54: Pregel Operator
	Slide 55: Scala Currying
	Slide 56: Pregel Operator
	Slide 57: Find the minimum value in a graph
	Slide 58: Single Source Shortest Path
	Slide 59: References
	Slide 60: End of Chapter 8.2

