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Chapter 8.2: Spark IV
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Spark GraphX

❖ GraphX is Apache Spark's API for graphs and graph-parallel 

computation. 

❖ At a high level, GraphX extends the Spark RDD by introducing a new 

Graph abstraction: a directed multigraph with properties attached to 

each vertex and edge

❖ To support graph computation, GraphX exposes a set of fundamental 

operators (e.g., subgraph, joinVertices) as well as an optimized variant 

of the Pregel API

❖ GraphX includes a growing collection of graph algorithms and builders 

to simplify graph analytics tasks.
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Graph-Parallel Computation

❖ The growing scale and importance of graph data has driven the 

development of numerous new graph-parallel systems (e.g., Giraph 

and GraphLab)

❖ These systems can efficiently execute sophisticated graph algorithms 

orders of magnitude faster than more general data-parallel systems.

➢ Expose specialized APIs to simplify graph programming
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Specialized Systems May Miss the Bigger Picture

❖ It is often desirable to be able to move between table and graph views 

of the same physical data and to leverage the properties of each view 

to easily and efficiently express computation
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GraphX Motivation

❖ The goal of the GraphX project is to unify graph-parallel and data-

parallel computation in one system with a single composable API.

❖ The GraphX API enables users to view data both as graphs and as 

collections (i.e., RDDs) without data movement or duplication.



5.7

GraphX Motivation

❖ Tables and Graphs are composable views of the same physical data

➢ Each view has its own operators that exploit the semantics of the 

view to achieve efficient execution
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View a Graph as a Table
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Table Operators

❖ Table (RDD) operators are inherited from Spark:

map

filter

groupBy

sort

union

join

leftOuterJoin

rightOuterJoin

reduce

count

fold

reduceByKey

groupByKey

cogroup

cross

zip

sample

take

first

partitionBy

mapWith

pipe

save

...
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The Property Graph

❖ The property graph is a directed multigraph with user defined objects 

attached to each vertex and edge.

❖ A directed multigraph is a directed graph with potentially multiple 

parallel edges sharing the same source and destination vertex

❖ The property graph is parameterized over the vertex (VD) and edge 

(ED) types. These are the types of the objects associated with each 

vertex and edge respectively.

❖ Each vertex is keyed by a unique 64-bit long identifier (VertexID). 

Similarly, edges have corresponding source and destination vertex 

identifiers.

❖ Logically the property graph corresponds to a pair of typed collections 

(RDDs) encoding the properties for each vertex and edge. 

class Graph[VD, ED] {
val vertices: VertexRDD[VD]
val edges: EdgeRDD[ED]

}
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Example Property Graph
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GraphX Example

❖ Import Spark and GraphX into your project

❖ We begin by creating the property graph from arrays of vertices and 

edges

import org.apache.spark._
import org.apache.spark.graphx._
// To make some of the examples work we will also need RDD
import org.apache.spark.rdd.RDD

val vertexArray = Array(
(3L, ("rxin", "student")),
(7L, ("jgonzal", "postdoc")),
(5L, ("franklin", "prof")),
(2L, ("istoica", "prof"))

)
val edgeArray = Array(
Edge(3L, 7L, "collab"),
Edge(5L, 3L, "advisor"),
Edge(2L, 5L, "colleague"),
Edge(5L, 7L, "pi"),

)
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Construct a Property Graph

❖ The most general method of constructing a property graph is to use 

the Graph object

➢ Edges have a srcId and a dstId corresponding to the source and 

destination vertex identifiers. 

➢ In addition, the Edge class has an attr member which stores the 

edge property

// Assume the SparkContext has already been constructed
val sc: SparkContext
// Create an RDD for the vertices
val users: RDD[(VertexId, (String, String))] =
sc.parallelize(vertexArray)

// Create an RDD for edges
val relationships: RDD[Edge[String]] =
sc.parallelize(edgeArray)

// Define a default user in case there are relationship with missing user
val defaultUser = ("John Doe", "Missing")
// Build the initial Graph
val graph = Graph(users, relationships, defaultUser)



5.14

Deconstruct a Property Graph

❖ In many cases we will want to extract the vertex and edge RDD views 

of a graph

❖ The graph class contains members (graph.vertices and graph.edges) 

to access the vertices and edges of the graph

➢ Note that graph.vertices returns an VertexRDD[(String, 

String)] which extends RDD[(VertexId, (String, String))] and so we 

use the scala case expression to deconstruct the tuple.

➢ graph.edges returns an EdgeRDD containing Edge[String]objects. 

We could have also used the case class type constructor as in the 

following: 

graph.edges.filter { case Edge(src, dst, prop) => src > dst }.count

// Count all users which are postdocs
graph.vertices.filter { case (id, (name, pos)) => pos == "postdoc" }.count
// Count all the edges where src > dst
graph.edges.filter(e => e.srcId > e.dstId).count
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Deconstruct a Property Graph

❖ Another example: use graph.vertices to display the names of the 

users who are professors

➢ We first get the vertices who are professors. It can also be written 

as: graph.vertices.filter(x => x._2._2==“prof”).collect

➢ Next, we print their names, which can also be written as: 

……foreach(x=>println(x._2._1+" is Professor"))

graph.vertices.filter { case (id, (name, pos)) => pos == "prof" 
}.collect.foreach { case (id, (name, age)) => println(s"$name is 
Professor") }
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Triplet View

❖ The triplet view logically joins the vertex and edge properties yielding 

an RDD[EdgeTriplet[VD, ED]] containing instances of the EdgeTriplet

class

❖ This join can be expressed in the following SQL expression:

or graphically as:

SELECT src.id, dst.id, src.attr, e.attr, dst.attr
FROM edges AS e LEFT JOIN vertices AS src, vertices AS dst
ON e.srcId = src.Id AND e.dstId = dst.Id
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EdgeTriplet class 

❖ The EdgeTriplet class extends the Edge class by adding the srcAttr

and dstAttr members which contain the source and destination 

properties respectively. 

❖ We can use the triplet view of a graph to render a collection of strings 

describing relationships between users.

// Constructed from above
val graph: Graph[(String, String), String]
// Use the triplets view to create an RDD of facts.
val facts: RDD[String] =
graph.triplets.map(triplet =>
triplet.srcAttr._1 + " is the " + triplet.attr + " of " + 

triplet.dstAttr._1)
facts.collect.foreach(println(_))
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Graph Operators

❖ Property graphs have a collection of basic operators that take user 

defined functions and produce new graphs with transformed properties 

and structure (like RDD operations).

class Graph[VD, ED] {

  // Information about the Graph

 val numEdges: Long

 val numVertices: Long

 val inDegrees: VertexRDD[Int]

 val outDegrees: VertexRDD[Int]

 val degrees: VertexRDD[Int]

// Views of the graph as collections

val vertices: VertexRDD[VD]

val edges: EdgeRDD[ED]

val triplets: RDD[EdgeTriplet[VD, ED]]

 // Transform vertex and edge attributes

 def mapVertices[VD2](map: (VertexID, VD) => VD2): Graph[VD2, ED]

 def mapEdges[ED2](map: Edge[ED] => ED2): Graph[VD, ED2] 

 def mapTriplets[ED2](map: EdgeTriplet[VD, ED] => ED2): Graph[VD, ED2]

 // Modify the graph structure

 def reverse: Graph[VD, ED]

 def groupEdges(merge: (ED, ED) => ED): Graph[VD, ED]

 // …other operators… 

}
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Property Operators

❖ Like the RDD map operator, the property graph contains the following:

➢ Each of these operators yields a new graph with the vertex or 

edge properties modified by the user defined map function.

➢ Note that in each case the graph structure is unaffected

➢ The second one can preserve the structural indices of the original 

graph and would benefit from the GraphX system optimizations

class Graph[VD, ED] {
def mapVertices[VD2](map: (VertexId, VD) => VD2): Graph[VD2, ED]
def mapEdges[ED2](map: Edge[ED] => ED2): Graph[VD, ED2]
def mapTriplets[ED2](map: EdgeTriplet[VD, ED] => ED2): Graph[VD, ED2]

}

val newVertices = graph.vertices.map { case (id, attr) => (id, 
mapUdf(id, attr)) }
val newGraph = Graph(newVertices, graph.edges)

val newGraph = graph.mapVertices((id, attr) => mapUdf(id, attr))
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Structural Operators

❖ Currently GraphX supports only a simple set of commonly used 

structural operators

➢ val graphR = graph.reverse

➢ val validGraph = graph.subgraph(vpred = (id, attr) => attr._2 != 

"prof")

class Graph[VD, ED] {
def reverse: Graph[VD, ED]
def subgraph(epred: EdgeTriplet[VD,ED] => Boolean,

vpred: (VertexId, VD) => Boolean): Graph[VD, ED]
def mask[VD2, ED2](other: Graph[VD2, ED2]): Graph[VD, ED]
def groupEdges(merge: (ED, ED) => ED): Graph[VD,ED]

}
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Neighborhood Aggregation

❖ A key step in many graph analytics tasks is aggregating information 

about the neighborhood of each vertex.

❖ The core aggregation operation in GraphX is aggregateMessages. 

➢ A user-defined sendMsg function, to send messages for each 

edge triplet in the graph

➢ A user-defined mergeMsg function, to aggregate those messages 

at their destination vertex.
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Neighborhood Aggregation

❖ We can use the aggregateMessages operator to compute the average 

age of the more senior followers of each user
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Pregel Operators

❖ The first argument list contains configuration parameters including the 

initial message, the maximum number of iterations, and the edge 

direction in which to send messages (by default along out edges).

❖ The second argument list contains the user defined functions for 

receiving messages (the vertex program vprog), computing messages 

(sendMsg), and combining messages mergeMsg.

def pregel[A]

      (initialMsg: A,

       maxIter: Int = Int.MaxValue,

       activeDir: EdgeDirection = EdgeDirection.Out)

      (vprog: (VertexId, VD, A) => VD,

       sendMsg: EdgeTriplet[VD, ED] => Iterator[(VertexId, A)],

       mergeMsg: (A, A) => A)

    : Graph[VD, ED] = {

 … …

     }
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Pregel Introduction
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Motivation of Pregel

❖ Many practical computing problems concern large graphs

❖ Single computer graph library does not scale

❖ MapReduce is ill-suited for graph processing

➢ Many iterations are needed for parallel graph processing

➢ Materializations of intermediate results at every MapReduce 

iteration harm performance

Large graph data
Web graph

Transportation routes

Citation relationships

Social networks

Graph algorithms
PageRank

Shortest path

Connected components

Clustering techniques
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Pregel

❖ Pregel: A System for Large-Scale Graph Processing (Google) -

Malewicz et al. SIGMOD 2010. 

❖ Scalable and Fault-tolerant platform

❖ API with flexibility to express arbitrary algorithm

❖ Inspired by Valiant’s Bulk Synchronous Parallel model

➢ Leslie G. Valiant: A Bridging Model for Parallel Computation. 

Commun. ACM 33 (8): 103-111 (1990)

❖ Vertex centric computation (Think like a vertex)
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Bulk Synchronous Parallel Model (BSP)

❖ Processing: a series of supersteps

❖ Vertex: computation is defined to run on each vertex

❖ Superstep S:  all vertices compute in parallel; each vertex v may

➢ receive messages sent to v from superstep S – 1; 

➢ perform some computation: modify its states and the states of its 

outgoing edges

➢ Send messages to other vertices ( to be received in the next 

superstep)

analogous to MapReduce rounds

Message passing

Vertex-centric, message passing
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Pregel Computation Model

❖ Based on Bulk Synchronous Parallel (BSP)

➢ Computational units encoded in a directed graph

➢ Computation proceeds in a series of supersteps

➢ Message passing architecture

Input

Output

Supersteps
(a sequence of iterations)
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Pregel Computation Model (Cont’)

Source: http://en.wikipedia.org/wiki/Bulk_synchronous_parallel

❖ Concurrent computation and Communication need not be ordered in 

time

❖ Communication through message passing

http://en.wikipedia.org/wiki/Bulk_synchronous_parallel
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Pregel Computation Model (Cont’)

❖ Superstep: the vertices compute in parallel

➢ Each vertex 

 Receives messages sent in the previous superstep

 Executes the same user-defined function

 Modifies its value or that of its outgoing edges

 Sends messages to other vertices (to be received in the next 

superstep)

 Votes to halt if it has no further work to do

➢ Termination condition

 All vertices are simultaneously inactive

 A vertex can choose to deactivate itself

 Is “woken up” if new messages received

State machine for a vertex
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Superstep

❖ During a superstep, the following can happen in the framework:

➢ It receives and reads messages that are sent to v from the 

previous superstep s-1.

➢ It applies a user-defined function f to each vertices in parallel, so f 

essentially specifies the behaviour of a single vertex v at a single 

superstep s.

➢ It can mutate the state of v.

➢ It can send messages to other vertices (typically along outgoing 

edges) that the vertices will receive in the next superstep s+1.

❖ All communications are between supersteps s and s+1
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Example: Find the minimum value in a graph

❖ The pseudo-code definition of f is also given above, it will:

➢ Set originalValue to the current value of the vertex.

➢ Mutate the value of the vertex to the minimum of all the incoming 

messages and originalValue.

➢ If originalValue and value are the same, then we will render the 

vertex inactive. Otherwise, send message out to all its outgoing 

neighbours.
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Superstep 0
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Superstep 1
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Superstep 2
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Superstep 3



5.37

Single-Source Shortest Path (SSSP)

❖ Problem: find shortest path from a source node to one or more target 

nodes

➢ Shortest might also mean lowest weight or cost

❖ Dijkstra’s Algorithm: 

➢ For a given source node in the graph, the algorithm finds the 

shortest path between that node and every other
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Dijkstra’s Algorithm



5.39

Dijkstra’s Algorithm Example
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Dijkstra’s Algorithm Example

0

10

5





Example from CLR

10

5

2 3

2

1

9

7

4 6



5.41

Dijkstra’s Algorithm Example
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Dijkstra’s Algorithm Example
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Dijkstra’s Algorithm Example
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Dijkstra’s Algorithm Example
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Example: SSSP – Parallel BFS in Pregel

45

0









10

5

2 3

2

1

9

7

4 6

Inactive Vertex

Active Vertex

Edge weight

Message

x

x



5.46

Example: SSSP – Parallel BFS in Pregel
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Example: SSSP – Parallel BFS in Pregel
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Example: SSSP – Parallel BFS in Pregel
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Example: SSSP – Parallel BFS in Pregel
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Example: SSSP – Parallel BFS in Pregel
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Example: SSSP – Parallel BFS in Pregel
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Example: SSSP – Parallel BFS in Pregel
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Example: SSSP – Parallel BFS in Pregel
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Pregel Operator

❖ Notice that Pregel takes two argument lists

➢ The first argument list contains configuration parameters including 

the initial message, the maximum number of iterations, and the 

edge direction in which to send messages (by default along out 

edges).

➢ The second argument list contains the user defined functions for 

receiving messages (the vertex program vprog), computing 

messages (sendMsg), and combining messages mergeMsg.

def pregel[A]

      (initialMsg: A,

       maxIter: Int = Int.MaxValue,

       activeDir: EdgeDirection = EdgeDirection.Out)

      (vprog: (VertexId, VD, A) => VD,

       sendMsg: EdgeTriplet[VD, ED] => Iterator[(VertexId, A)],

       mergeMsg: (A, A) => A)

    : Graph[VD, ED] = {

 … …

     }
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Scala Currying

❖ Methods may define multiple parameter lists. When a method is called 

with a fewer number of parameter lists, then this will yield a function 

taking the missing parameter lists as its arguments.

❖ Results: 

➢ nums.filter(modN(2)) = nums.filter(x => modN(2)(x))

➢ x is treated as the argument: List(2,4,6,8)

def modN(n: Int)(x: Int) = ((x % n) == 0)

val nums = List(1, 2, 3, 4, 5, 6, 7, 8)

nums.filter(modN(2))
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Pregel Operator

Messages delivered from

vertices in the previous

superstep are combined

to a single message by a

custom mergeMsg function

The custom vprog method

decides how to update the

vertex data based on the

message received from

mergeMsg

The custom sendMsg

function decides which

vertices will receive

messages in the next

superstep
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Find the minimum value in a graph

val initialMsg = 9999 

def vprog(vertexId: VertexId, value: (Int, Int), message: Int): (Int, Int) = 

{ 

if (message == initialMsg) value 

else (message min value._1, value._1) 

} 

def sendMsg(triplet: EdgeTriplet[(Int, Int), Boolean]): Iterator[(VertexId, 

Int)] = { 

val sourceVertex = triplet.srcAttr

if (sourceVertex._1 == sourceVertex._2) Iterator.empty

else Iterator((triplet.dstId, sourceVertex._1)) 

} 

def mergeMsg(msg1: Int, msg2: Int): Int = msg1 min msg2

val minGraph = graph.pregel(initialMsg)(vprog,  sendMsg, mergeMsg)
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Single Source Shortest Path

❖ vprog:

❖ sendMsg: 

❖ mergeMsg:

❖ Full Pregel function call:

(id, dist, newDist) => math.min(dist, newDist)

triplet => {

    if (triplet.srcAttr + triplet.attr < triplet.dstAttr) {

      Iterator((triplet.dstId, triplet.srcAttr + triplet.attr))

    } else {  Iterator.empty  }

  }

(a, b) => math.min(a, b)

val initialGraph = graph.mapVertices((id, _) =>

    if (id == sourceId) 0.0 else Double.PositiveInfinity)

val sssp = initialGraph.pregel(Double.PositiveInfinity)(

  (id, dist, newDist) => math.min(dist, newDist), // Vertex Program

  triplet => {  // Send Message

    if (triplet.srcAttr + triplet.attr < triplet.dstAttr) {

      Iterator((triplet.dstId, triplet.srcAttr + triplet.attr))

    } else {  Iterator.empty  }

  },

  (a, b) => math.min(a, b) // Merge Message

)

https://github.com/apache/sp

ark/blob/master/graphx/src/m

ain/scala/org/apache/spark/gr

aphx/lib/ShortestPaths.scala

or

https://spark.apache.org/docs

/latest/graphx-programming-

guide.html#pregel-api

https://github.com/apache/spark/blob/master/graphx/src/main/scala/org/apache/spark/graphx/lib/ShortestPaths.scala
https://github.com/apache/spark/blob/master/graphx/src/main/scala/org/apache/spark/graphx/lib/ShortestPaths.scala
https://github.com/apache/spark/blob/master/graphx/src/main/scala/org/apache/spark/graphx/lib/ShortestPaths.scala
https://github.com/apache/spark/blob/master/graphx/src/main/scala/org/apache/spark/graphx/lib/ShortestPaths.scala
https://spark.apache.org/docs/latest/graphx-programming-guide.html#pregel-api
https://spark.apache.org/docs/latest/graphx-programming-guide.html#pregel-api
https://spark.apache.org/docs/latest/graphx-programming-guide.html#pregel-api
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End of Chapter 8.2
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