COMP9313: Big Data Management

Lecturer: Xin Cao Course web site: http://www.cse.unsw.edu.au/~cs9313/

Chapter 8.1: Finding Similar Items

A Common Metaphor

Many problems can be expressed as finding "similar" sets:

> Find near-neighbors in <u>high-dimensional</u> space

Examples:

- Pages with similar words
 - For duplicate detection, classification by topic
- Customers who purchased similar products
 - Products with similar customer sets
- Images with similar features
 - Google image search

Images with Similar Features

Similarity Search in One Dimensional Space

- Just numbers, use binary search, binary search tree, B+-Tree...
- The essential idea behind: objects can be sorted

Similarity Search in 2D Space

- k nearest neighbour (kNN) query: find the top-k nearest spatial object to the query location
- E.g., find the top-5 closest restaurants to UNSW

Similarity Search in 2D Space

In Euclidean Space

Similarity Search in 2D Space

 In road networks: Distance is computed based on the network distance (such as the length of the shortest path)

 p_5 is the closest in the spatial network setting p_1 is the closest in the Euclidean space

The Problem in 2D Space

- Euclidean space
 - Grid index
 - Quad-tree
 - ➢ k-d tree
 - R-tree (R+-tree, R*-tree, etc.)
 - > m-tree, x-tree,
 - Space filing curves: Z-order, Hilbert order,
- Road Networks
 - G-tree

.

- Contraction Hierarchy
- 2-hop labeling

3

3

Curse of Dimensionality

- Refers to various phenomena that arise in high dimensional spaces that do not occur in low dimensional settings.
- Specifically, refers to the decrease in performance of similarity search query processing when the dimensionality increases.
- In high dimensional space, almost all points are far away from each other.
 - To find the top-10 nearest neighbors, what is the length of the average neighborhood cube?

Problem

- **\diamond** Given: High dimensional data points x_1, x_2, \dots
 - **For example:** Image is a long vector of pixel colors

$$\begin{bmatrix} 1 & 2 & 1 \\ 0 & 2 & 1 \\ 0 & 1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 1 & 0 & 2 & 1 & 0 \\ 1 & 2 & 1 & 0 & 0 \end{bmatrix}$$

- **And some distance function** $d(x_1, x_2)$
 - > Which quantifies the "distance" between x_1 and x_2
- ✤ Goal: Find all pairs of data points (x_i, x_j) that are within some distance threshold $d(x_i, x_j) \leq s$
- Note: Naïve solution would take $O(N^2)$ \otimes

where N is the number of data points

***MAGIC:** This can be done in O(N)!! How?

Distance Measures

- ✤ Goal: Find near-neighbors in high-dim. space
 - We formally define "near neighbors" as points that are a "small distance" apart
- For each application, we first need to define what "distance" means
- Today: Jaccard distance/similarity
 - The Jaccard similarity of two sets is the size of their intersection divided by the size of their union: sim(C₁, C₂) = |C₁∩C₂|/|C₁∪C₂|
 - > Jaccard distance: $d(C_1, C_2) = 1 |C_1 \cap C_2|/|C_1 \cup C_2|$

3 in intersection 8 in union Jaccard similarity= 3/8 Jaccard distance = 5/8

Task: Finding Similar Documents

- Goal: Given a large number (N in the millions or billions) of documents, find "near duplicate" pairs.
- ***** Applications:
 - > Mirror websites, or approximate mirrors
 - Don't want to show both in search results
 - Similar news articles at many news sites
 - Cluster articles by "same story"

Problems:

- Many small pieces of one document can appear out of order in another
- Too many documents to compare all pairs
- Documents are so large or so many that they cannot fit in main memory

3 Essential Steps for Similar Docs

- 1. Shingling: Convert documents to sets
- 2. *Min-Hashing:* Convert large sets to short signatures, while preserving similarity
- 3. Locality-Sensitive Hashing: Focus on pairs of signatures likely to be from similar documents
 - > Candidate pairs!

The Big Picture

Step 1: Shingling: Convert documents to sets

Documents as High-Dim Data

Step 1: Shingling: Convert documents to sets

Simple approaches:

- Document = set of words appearing in document
- Document = set of "important" words
- > Don't work well for this application. Why?
- Need to account for ordering of words!
- A different way: Shingles!

Define: Shingles

- A k-shingle (or k-gram) for a document is a sequence of k tokens that appears in the doc
 - Tokens can be characters, words or something else, depending on the application
 - Assume tokens = characters for examples
- Example: k=2; document D₁ = abcab Set of 2-shingles: S(D₁) = {ab, bc, ca}
 - Option: Shingles as a bag (multiset), count ab twice: S'(D₁) = {ab, bc, ca, ab}

Shingles and Similarity

- Documents that are intuitively similar will have many shingles in common.
- Changing a word only affects k-shingles within distance k-1 from the word.
- Reordering paragraphs only affects the 2k shingles that cross paragraph boundaries.
- Example: k=3, "The dog which chased the cat" versus "The dog that chased the cat".
 - Only 3-shingles replaced are g_w, _wh, whi, hic, ich, ch_, and h_c.

Compressing Shingles

- To compress long shingles, we can hash them to (say) 4 bytes
- ***** Represent a document by the set of hash values of its *k*-shingles
 - Idea: Two documents could (rarely) appear to have shingles in common, when in fact only the hash-values were shared
- Example: k=2; document D₁ = abcab
 Set of 2-shingles: S(D₁) = {ab, bc, ca}
 Hash the singles: h(D₁) = {1, 5, 7}

Similarity Metric for Shingles

Document D₁ is a set of its k-shingles C₁=S(D₁)

- Equivalently, each document is a
 0/1 vector in the space of *k*-shingles
 - Each unique shingle is a dimension
 - Vectors are very sparse
- ✤ A natural similarity measure is the Jaccard similarity:

 $sim(D_1, D_2) = |C_1 \cap C_2| / |C_1 \cup C_2|$

Working Assumption

- Documents that have lots of shingles in common have similar text, even if the text appears in different order
- If we pick k too small, then we would expect most sequences of k characters to appear in most documents
 - We could have documents whose shingle-sets had high Jaccard similarity, yet the documents had none of the same sentences or even phrases
 - Extreme case: when we use k = 1, almost all Web pages will have high similarity.
- Caveat: You must pick k large enough, or most documents will have most shingles
 - > k = 5 is OK for short documents
 - > k = 10 is better for long documents

Motivation for Minhash/LSH

Suppose we need to find near-duplicate documents among N = 1 million documents

- Naïvely, we would have to compute pairwise Jaccard similarities for every pair of docs
 - > $N(N-1)/2 \approx 5*10^{11}$ comparisons
 - > At 10^5 secs/day and 10^6 comparisons/sec, it would take **5 days**
- For N = 10 million, it takes more than a year...

The set of strings of length *k* that appear in the document Signatures: short integer vectors that represent the sets, and reflect their similarity

Step 2: Minhashing: Convert large sets to short signatures, while preserving similarity

Encoding Sets as Bit Vectors

 Many similarity problems can be formalized as finding subsets that have significant intersection

- Encode sets using 0/1 (bit, boolean) vectors
 - > One dimension per element in the universal set
- Interpret set intersection as bitwise AND, and set union as bitwise OR
- ✤ Example: C₁ = 10111; C₂ = 10011
 - Size of intersection = 3; size of union = 4,
 - Jaccard similarity (not distance) = 3/4
 - > Distance: $d(C_1, C_2) = 1 (Jaccard similarity) = 1/4$

From Sets to Boolean Matrices

- Rows = elements (shingles)
- Columns = sets (documents)
 - 1 in row e and column s if and only if e is a member of s
 - Column similarity is the Jaccard similarity of the corresponding sets (rows with value 1)
 - > Typical matrix is sparse!
- Each document is a column:

Documents

From Sets to Boolean Matrices

♦ Example: $S_1 = \{a, d\}, S_2 = \{c\}, S_3 = \{b, d, e\}, and S_4 = \{a, c, d\}$

Element	S_1	S_2	S_3	S_4
a	1	0	0	1
b	0	0	1	0
c	0	1	0	1
d	1	0	1	1
e	0	0	1	0

> sim(S_1, S_3) = ?

 Size of intersection = 1; size of union = 4, Jaccard similarity (not distance) = 1/4

• $d(S_1, S_3) = 1 - (Jaccard similarity) = 3/4$

Outline: Finding Similar Columns

So far:

- > Documents \rightarrow Sets of shingles
- Represent sets as boolean vectors in a matrix
- **Next goal:** Find similar columns while computing small signatures
 - Similarity of columns == similarity of signatures

Outline: Finding Similar Columns

- **Next Goal: Find similar columns, Small signatures**
- Naïve approach:
 - > 1) Signatures of columns: small summaries of columns
 - > 2) Examine pairs of signatures to find similar columns
 - **Essential:** Similarities of signatures and columns are related
 - > 3) Optional: Check that columns with similar signatures are really similar

Warnings:

- > Comparing all pairs may take too much time: **Job for LSH**
 - These methods can produce false negatives, and even false positives (if the optional check is not made)

Hashing Columns (Signatures)

✤ Key idea: "hash" each column C to a small signature h(C), such that:

- > (1) *h*(*C*) is small enough that the signature fits in RAM
- > (2) $sim(C_1, C_2)$ is the same as the "similarity" of signatures $h(C_1)$ and $h(C_2)$
- **Goal:** Find a hash function $h(\cdot)$ such that:
 - > If $sim(C_1, C_2)$ is high, then with high prob. $h(C_1) = h(C_2)$
 - ▶ If $sim(C_1, C_2)$ is low, then with high prob. $h(C_1) \neq h(C_2)$

Hash docs into buckets. Expect that "most" pairs of near duplicate docs hash into the same bucket!

Min-Hashing

Coal: Find a hash function $h(\cdot)$ such that:

- > if $sim(C_1, C_2)$ is high, then with high prob. $h(C_1) = h(C_2)$
- > if $sim(C_1, C_2)$ is low, then with high prob. $h(C_1) \neq h(C_2)$

Clearly, the hash function depends on the similarity metric:

> Not all similarity metrics have a suitable hash function

There is a suitable hash function for the Jaccard similarity: Min-Hashing

Min-Hashing

- Imagine the rows of the boolean matrix permuted under random permutation π
- Define a "hash" function h_π(C) = the index of the first (in the permuted order π) row in which column C has value 1:

$$h_{\pi}(\mathbf{C}) = \min_{\pi} \pi(\mathbf{C})$$

Use several (e.g., 100) independent hash functions (that is, permutations) to create a signature of a column

Min-Hashing Example

Input Matrix

Min-Hashing Example

Input Matrix

Min-Hashing Example

Input Matrix

The Min-Hash Property

- Choose a random permutation π
- $Imit Claim: \Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$
- Why?
 - > Let **X** be a doc (set of shingles), $y \in X$ is a shingle
 - > Then: $Pr[\pi(y) = min(\pi(X))] = 1/|X|$
 - It is equally likely that any $y \in X$ is mapped to the *min* element
 - > Let **y** be s.t. $\pi(y) = \min(\pi(C_1 \cup C_2))$
 - > Then either: $\pi(y) = \min(\pi(C_1))$ if $y \in C_1$, or $\pi(y) = \min(\pi(C_2))$ if $y \in C_2$
 - > So the prob. that **both** are true is the prob. $y \in C_1 \cap C_2$
 - > $\Pr[\min(\pi(C_1))=\min(\pi(C_2))]=|C_1 \cap C_2|/|C_1 \cup C_2|= sim(C_1, C_2)$

0	0
0	0
1	1
0	0
0	1
1	0

One of the two cols had to have 1 at position **y**

Four Types of Rows

✤ Given cols C₁ and C₂, rows may be classified as:

> a = # rows of type A, etc.

- Note: $sim(C_1, C_2) = a/(a + b + c)$
- **♦** Then: $\Pr[h(C_1) = h(C_2)] = Sim(C_1, C_2)$
 - > Look down the cols C_1 and C_2 until we see a 1
 - > If it's a type-A row, then $h(C_1) = h(C_2)$ If a type-B or type-C row, then not

Similarity for Signatures

Permutation π

Input matrix (Shingles x Documents)

1	0	1	0
1	0	0	1
0	1	0	1
0	1	0	1
0	1	0	1
1	0	1	0
1	0	1	0

Signature matrix *M*

Similarities:

	1-3	2-4	1-2	3-4
Col/Col	0.75	0.75	0	0
Sig/Sig	0.67	1.00	0	0

Similarity for Signatures

- We know: $\Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$
- Now generalize to multiple hash functions
- The similarity of two signatures is the fraction of the hash functions in which they agree
- Note: Because of the Min-Hash property, the similarity of columns is the same as the expected similarity of their signatures

Min-Hash Signatures

Pick K=100 random permutations of the rows

- Think of sig(C) as a column vector
- sig(C)[i] = according to the *i*-th permutation, the index of the first row that has a 1 in column C

$sig(C)[i] = min(\pi_i(C))$

♦ Note: The sketch (signature) of document C is small ~100 bytes!

 We achieved our goal! We "compressed" long bit vectors into short signatures

Implementation Trick

Permuting rows even once is prohibitive

Row hashing!

- Pick K = 100 hash functions k_i
- > Ordering under k_i gives a random row permutation!

One-pass implementation

- For each column C and hash-func. k_i keep a "slot" for the min-hash value
- ➢ Initialize all sig(C)[i] =∞
- Scan rows looking for 1s
 - Suppose row *j* has 1 in column *C*
 - Then for each k_i:

- If $k_i(j) < sig(C)[i]$, then $sig(C)[i] \leftarrow k_i(j)$

How to pick a random hash function h(x)? Universal hashing: $h_{a,b}(x)=((a \cdot x+b) \mod p) \mod N$ where:

a,b ... random integers p ... prime number (p > N)

Implementation Example

Row	S_1	S_2	S_3	S_4	$x+1 \mod 5$	$3x+1 \mod 5$
0	1	0	0	1	1	1
1	0	0	1	0	2	4
2	0	1	0	1	3	2
3	1	0	1	1	4	0
4	0	0	1	0	0	3

- □ 0. Initialize all $sig(C)[i] = \infty$
- ✤ Row 0: we see that the values of h₁(0) and h₂(0) are both 1, thus sig(S₁)[0] = 1, sig(S₁)[1] = 1, sig(S₄)[0] = 1, sig(S₄)[1] = 1,
- ♦ Row 1, we see h₁(1) = 2 and h₂(1) = 4, thus sig(S₃)[0] = 2, sig(S₃)[1] = 4

	S_1	S_2	S_3	S_4
h_1	∞	∞	∞	∞
h_2	∞	∞	∞	∞

	S_1	S_2	S_3	S_4
h_1	1	∞	∞	1
h_2	1	∞	∞	1

	S_1	S_2	S_3	S_4
h_1	1	∞	2	1
h_2	1	∞	4	1

Implementation Example

Row	S_1	S_2	S_3	S_4	$x+1 \mod 5$	$3x+1 \mod 5$
0	1	0	0	1	1	1
1	0	0	1	0	2	4
2	0	1	0	1	3	2
3	1	0	1	1	4	0
4	0	0	1	0	0	3

 Row 2: h₁(2) = 3 and h₂(2) = 2, thus sig(S₂)[0] = 3, sig(S₂)[1] = 2, no update for S₄

	S_1	S_2	S_3	S_4
h_1	1	3	2	1
h_2	0	2	0	0

	S_1	S_2	S_3	S_4
h_1	1	3	0	1
h_2	0	2	0	0

✤ Row 3: $h_1(3) = 4$ and $h_2(3) = 0$, update sig(S₁)[1] = 0, sig(S₃)[1] = 0, sig(S₄)[1] = 0,

Implementation Example

- We can estimate the Jaccard similarities of the underlying sets from this signature matrix.
 - > Signature matrix: SIM(S₁, S₄) = 1.0
 - > Jaccard Similarity: $SIM(S_1, S_4) = 2/3$

References

Chapter 3 of Mining of Massive Datasets.

End of Chapter 7.1