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7.2

Chapter 8.1: Finding Similar Items
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A Common Metaphor

❖ Many problems can be expressed as finding “similar” sets:

➢ Find near-neighbors in high-dimensional space

❖ Examples:

➢ Pages with similar words

 For duplicate detection, classification by topic

➢ Customers who purchased similar products

 Products with similar customer sets

➢ Images with similar features

 Google image search
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Images with Similar Features
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Similarity Search in One Dimensional Space

❖ Just numbers, use binary search, binary search tree, B+-Tree…

❖ The essential idea behind: objects can be sorted
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Similarity Search in 2D Space

❖ k nearest neighbour (kNN) query: find the top-k nearest spatial object 

to the query location

❖ E.g., find the top-5 closest restaurants to UNSW
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Similarity Search in 2D Space

❖ In Euclidean Space
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Similarity Search in 2D Space

❖ In road networks: Distance is computed based on the network 

distance (such as the length of the shortest path)
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The Problem in 2D Space

❖ Euclidean space

➢ Grid index

➢ Quad-tree

➢ k-d tree

➢ R-tree (R+-tree, R*-tree, etc.)

➢ m-tree, x-tree, … …

➢ Space filing curves: Z-order, Hilbert order, … …

❖ Road Networks

➢ G-tree

➢ Contraction Hierarchy

➢ 2-hop labeling

➢ … …
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Curse of Dimensionality

❖ Refers to various phenomena that arise in high dimensional spaces 

that do not occur in low dimensional settings.

❖ Specifically, refers to the decrease in performance of similarity search 

query processing when the dimensionality increases.

❖ In high dimensional space, almost all points are far away from each 

other.

➢ To find the top-10 nearest neighbors, what is the length of the 

average neighborhood cube?
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Problem

❖ Given: High dimensional data points 𝒙𝟏, 𝒙𝟐, …

➢ For example: Image is a long vector of pixel colors
1 2 1
0 2 1
0 1 0

→ [1 2 1 0 2 1 0 1 0]

❖ And some distance function 𝒅(𝒙𝟏, 𝒙𝟐)

➢ Which quantifies the “distance” between 𝒙𝟏 and 𝒙𝟐

❖ Goal: Find all pairs of data points (𝒙𝒊, 𝒙𝒋) that are within some distance 

threshold 𝒅 𝒙𝒊, 𝒙𝒋 ≤ 𝒔

❖ Note: Naïve solution would take 𝑶 𝑵𝟐  

where 𝑵 is the number of data points

❖MAGIC: This can be done in 𝑶 𝑵 !! 

How?
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Distance Measures

❖ Goal: Find near-neighbors in high-dim. space

➢ We formally define “near neighbors” as points that are a “small 

distance” apart

❖ For each application, we first need to define what “distance” means

❖ Today: Jaccard distance/similarity

➢ The Jaccard similarity of two sets is the size of their intersection 

divided by the size of their union:

sim(C1, C2) = |C1C2|/|C1C2|

➢ Jaccard distance: d(C1, C2) = 1 - |C1C2|/|C1C2|

3 in intersection

8 in union

Jaccard similarity= 3/8

Jaccard distance = 5/8
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Task: Finding Similar Documents

❖ Goal: Given a large number (𝑵 in the millions or billions) of documents, 

find “near duplicate” pairs·

❖ Applications:

➢ Mirror websites, or approximate mirrors

 Don’t want to show both in search results

➢ Similar news articles at many news sites

 Cluster articles by “same story”

❖ Problems:

➢ Many small pieces of one document can appear out of order in another

➢ Too many documents to compare all pairs

➢ Documents are so large or so many that they cannot fit in main memory
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3 Essential Steps for Similar Docs

1. Shingling: Convert documents to sets

2. Min-Hashing: Convert large sets to short signatures, while 

preserving similarity

3. Locality-Sensitive Hashing: Focus on pairs of signatures likely to 

be from similar documents

➢ Candidate pairs!
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The Big Picture

Docu-

ment

The set

of strings

of length k

that appear

in the doc-

ument

Signatures:

short integer

vectors that

represent the

sets, and

reflect their

similarity

Locality-

Sensitive

Hashing

Candidate

pairs:

those pairs

of signatures

that we need

to test for

similarity



Step 1: Shingling: Convert documents to 

sets
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Documents as High-Dim Data

❖ Step 1: Shingling: Convert documents to sets

❖ Simple approaches:

➢ Document = set of words appearing in document

➢ Document = set of “important” words

➢ Don’t work well for this application. Why?

❖ Need to account for ordering of words!

❖ A different way: Shingles!
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Define: Shingles

❖ A k-shingle (or k-gram) for a document is a sequence of k tokens that 

appears in the doc

➢ Tokens can be characters, words or something else, depending on the 

application

➢ Assume tokens = characters for examples

❖ Example: k=2; document D1 = abcab

Set of 2-shingles: S(D1) = {ab, bc, ca}

➢ Option: Shingles as a bag (multiset), count ab twice: S’(D1) = {ab, bc, ca, 

ab}
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Shingles and Similarity

❖ Documents that are intuitively similar will have many shingles in 

common.

❖ Changing a word only affects k-shingles within distance k-1 from the 

word.

❖ Reordering paragraphs only affects the 2k shingles that cross 

paragraph boundaries.

❖ Example: k=3, “The dog which chased the cat” versus “The dog that 

chased the cat”.

➢ Only 3-shingles replaced are g_w, _wh, whi, hic, ich, ch_, and 

h_c.

19
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Compressing Shingles

❖ To compress long shingles, we can hash them to (say) 4 bytes

❖ Represent a document by the set of hash values of its k-shingles

➢ Idea: Two documents could (rarely) appear to have shingles in 

common, when in fact only the hash-values were shared

❖ Example: k=2; document D1= abcab

Set of 2-shingles: S(D1) = {ab, bc, ca}

Hash the singles: h(D1) = {1, 5, 7}
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Similarity Metric for Shingles

❖ Document D1 is a set of its k-shingles C1=S(D1)

❖ Equivalently, each document is a 

0/1 vector in the space of k-shingles

➢ Each unique shingle is a dimension

➢ Vectors are very sparse

❖ A natural similarity measure is the Jaccard similarity:

  sim(D1, D2) = |C1C2|/|C1C2|
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Working Assumption

❖ Documents that have lots of shingles in common have similar 

text, even if the text appears in different order

❖ If we pick k too small, then we would expect most sequences of k

characters to appear in most documents

➢ We could have documents whose shingle-sets had high Jaccard

similarity, yet the documents had none of the same sentences or 

even phrases

➢ Extreme case: when we use k = 1, almost all Web pages will have 

high similarity.

❖ Caveat: You must pick k large enough, or most documents will have 

most shingles

➢ k = 5 is OK for short documents

➢ k = 10 is better for long documents
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Motivation for Minhash/LSH

❖ Suppose we need to find near-duplicate documents among 𝑵 = 𝟏 million 

documents

❖ Naïvely, we would have to compute pairwise Jaccard similarities for every 

pair of docs

➢ 𝑵(𝑵 − 𝟏)/𝟐 ≈ 5*1011 comparisons

➢ At 105 secs/day and 106 comparisons/sec, it would take 5 days

❖ For 𝑵 =  𝟏𝟎 million, it takes more than a year…



Step 2: Minhashing: Convert large sets 

to short signatures, while preserving 

similarity
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Encoding Sets as Bit Vectors

❖ Many similarity problems can be 

formalized as finding subsets that 

have significant intersection

❖ Encode sets using 0/1 (bit, boolean) vectors 

➢ One dimension per element in the universal set

❖ Interpret set intersection as bitwise AND, and 

set union as bitwise OR

❖ Example: C1 = 10111; C2 = 10011

➢ Size of intersection = 3; size of union = 4, 

➢ Jaccard similarity (not distance) = 3/4

➢ Distance: d(C1,C2) = 1 – (Jaccard similarity) = 1/4
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From Sets to Boolean Matrices

❖ Rows = elements (shingles)

❖ Columns = sets (documents)

➢ 1 in row e and column s if and only if e is a 

member of s

➢ Column similarity is the Jaccard similarity of the 

corresponding sets (rows with value 1)

➢ Typical matrix is sparse!

❖ Each document is a column:

0101

0111

1001

1000

1010

1011

0111 

Documents

S
h
in

g
le

s



7.27

From Sets to Boolean Matrices

❖ Example: S1 = {a, d}, S2 = {c}, S3 = {b, d, e}, and S4 = {a, c, d}

➢ sim(S1, S3) = ?

 Size of intersection = 1; size of union = 4, 

Jaccard similarity (not distance) = 1/4

 d(S1, S3) = 1 – (Jaccard similarity) = 3/4
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Outline: Finding Similar Columns

❖ So far:

➢ Documents → Sets of shingles

➢ Represent sets as boolean vectors in a matrix

❖ Next goal: Find similar columns while computing small signatures

➢ Similarity of columns == similarity of signatures
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Outline: Finding Similar Columns

❖ Next Goal: Find similar columns, Small signatures

❖ Naïve approach:

➢ 1) Signatures of columns: small summaries of columns

➢ 2) Examine pairs of signatures to find similar columns

 Essential: Similarities of signatures and columns are related

➢ 3) Optional: Check that columns with similar signatures are really similar

❖ Warnings:

➢ Comparing all pairs may take too much time: Job for LSH

 These methods can produce false negatives, and even false positives (if 

the optional check is not made)
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Hashing Columns (Signatures)

❖ Key idea: “hash” each column C to a small signature h(C), such that:

➢ (1) h(C) is small enough that the signature fits in RAM

➢ (2) sim(C1, C2) is the same as the “similarity” of signatures h(C1) and h(C2)

❖ Goal: Find a hash function h(·) such that:

➢ If sim(C1,C2) is high, then with high prob. h(C1) = h(C2)

➢ If sim(C1,C2) is low, then with high prob. h(C1) ≠ h(C2)

❖ Hash docs into buckets. Expect that “most” pairs of near duplicate docs 

hash into the same bucket!
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Min-Hashing

❖ Goal: Find a hash function h(·) such that:

➢ if sim(C1,C2) is high, then with high prob. h(C1) = h(C2)

➢ if sim(C1,C2) is low, then with high prob. h(C1) ≠ h(C2)

❖ Clearly, the hash function depends on the similarity metric:

➢ Not all similarity metrics have a suitable hash function

❖ There is a suitable hash function for the Jaccard similarity: Min-Hashing 
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Min-Hashing

❖ Imagine the rows of the boolean matrix permuted under random 

permutation 

❖ Define a “hash” function h(C) = the index of the first (in the 

permuted order ) row in which column C has value 1:

   h (C) = min (C)

❖ Use several (e.g., 100) independent hash functions (that is, 

permutations) to create a signature of a column
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Min-Hashing Example
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Min-Hashing Example
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Min-Hashing Example
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Min-Hashing Example
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The Min-Hash Property

❖ Choose a random permutation 

❖ Claim: Pr[h(C1) = h(C2)] = sim(C1, C2) 

❖ Why?

➢ Let X be a doc (set of shingles), y X is a shingle

➢ Then: Pr[(y) = min((X))] = 1/|X|

 It is equally likely that any y X is mapped to the min element

➢ Let y be s.t. (y) = min((C1C2))

➢ Then either:  (y) = min((C1))  if y  C1 , or

     (y) = min((C2))  if y  C2

➢ So the prob. that both are true is the prob. y  C1  C2

➢ Pr[min((C1))=min((C2))]=|C1C2|/|C1C2|= sim(C1, C2) 
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Four Types of Rows

❖ Given cols C1 and C2, rows may be classified as:

    C1 C2

   A 1 1

   B 1 0

   C 0 1

   D 0 0

➢ a = # rows of type A, etc.

❖ Note: sim(C1, C2) = a/(a +b +c)

❖ Then: Pr[h(C1) = h(C2)] = Sim(C1, C2) 

➢ Look down the cols C1 and C2 until we see a 1

➢ If it’s a type-A row, then h(C1) = h(C2)

If a type-B or type-C row, then not
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Similarity for Signatures

Signature matrix M
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                 1-3      2-4    1-2   3-4

Col/Col 0.75    0.75    0       0

Sig/Sig 0.67    1.00    0       0
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Similarity for Signatures

❖ We know: Pr[h(C1) = h(C2)] = sim(C1, C2)

❖ Now generalize to multiple hash functions

❖ The similarity of two signatures is the fraction of the hash 

functions in which they agree

❖ Note: Because of the Min-Hash property, the similarity of columns is 

the same as the expected similarity of their signatures



7.41

Min-Hash Signatures

❖ Pick K=100 random permutations of the rows

❖ Think of sig(C) as a column vector

❖ sig(C)[i] = according to the i-th permutation, the index of the first row that has a 

1 in column C

  sig(C)[i] = min (i(C))
❖ Note: The sketch (signature) of document C is small  ~𝟏𝟎𝟎 bytes!

❖ We achieved our goal! We “compressed” long bit vectors into short 

signatures
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Implementation Trick

❖ Permuting rows even once is prohibitive

❖ Row hashing!

➢ Pick K = 100 hash functions ki

➢ Ordering under ki gives a random row permutation!

❖ One-pass implementation

➢ For each column C and hash-func. ki keep a “slot” for the min-hash 

value

➢ Initialize all sig(C)[i] = 

➢ Scan rows looking for 1s

 Suppose row j has 1 in column C

 Then for each ki :

– If ki(j) < sig(C)[i], then sig(C)[i]  ki(j)

How to pick a random

hash function h(x)?

Universal hashing:

ha,b(x)=((a·x+b) mod p) mod N

where:

a,b … random integers

p … prime number (p > N)
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Implementation Example

0. Initialize all sig(C)[i] = 

❖ Row 0: we see that the values of h1(0) and 

h2(0) are both 1, thus sig(S1)[0] = 1,

      sig(S1)[1] = 1, sig(S4)[0] = 1, sig(S4)[1] = 1, 

❖ Row 1, we see h1(1) = 2 and h2(1) = 4，

     thus sig(S3)[0] = 2, sig(S3)[1] = 4
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Implementation Example

❖ Row 2: h1(2) = 3 and h2(2) = 2, thus

     sig(S2)[0] = 3, sig(S2)[1] = 2, no update for S4

❖  Row 3: h1(3) = 4 and h2(3) = 0, update

      sig(S1)[1] = 0, sig(S3)[1] = 0, sig(S4)[1] = 0,

❖ Row 4: h1(4) = 0 and h2(4) = 3, update

     sig(S3)[0] = 0,
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Implementation Example

❖ We can estimate the Jaccard similarities of the underlying sets from this 

signature matrix. 

➢ Signature matrix: SIM(S1, S4) = 1.0

➢ Jaccard Similarity: SIM(S1, S4) = 2/3
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References

❖ Chapter 3 of Mining of Massive Datasets.



End of Chapter 7.1
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