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Chapter 8.1: Finding Similar Iltems



A Common Metaphor

<+ Many problems can be expressed as finding “similar” sets:
Find near-neighbors in high-dimensional space

< Examples:
Pages with similar words
For duplicate detection, classification by topic
Customers who purchased similar products
Products with similar customer sets
Images with similar features
Google image search
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Images with Similar Features
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Similarity Search in One Dimensional Space

< Just numbers, use binary search, binary search tree, B+-Tree...
< The essential idea behind: objects can be sorted
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Similarity Search in 2D Space

» k nearest neighbour (kKNN) query: find the top-k nearest spatial object
to the query location

< E.qg., find the top-5 closest restaurants to UNSW
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Similarity Search in 2D Space

< In Euclidean Space

01 O P4
O

O pr

7.7



Similarity Search in 2D Space

< In road networks: Distance is computed based on the network
distance (such as the length of the shortest path)

Ps is the closest in the spatial network setting
p, is the closest in the Euclidean space
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The Problem in 2D Space

3

< Euclidean space
Grid index
Quad-tree
k-d tree
R-tree (R+-tree, R*-tree, etc.) . 2

m-tree, x-tree, ... ...
Space filing curves: Z-order, Hilbert order, ... ...
< Road Networks
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Curse of Dimensionality

Refers to various phenomena that arise in high dimensional spaces
that do not occur in low dimensional settings.

Specifically, refers to the decrease in performance of similarity search
guery processing when the dimensionality increases.

In high dimensional space, almost all points are far away from each
other.

To find the top-10 nearest neighbors, what is the length of the
average neighborhood cube?
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Problem

Given: High dimensional data points x4, x5, ...
For example: Image is a long vector of pixel colors

1 2 1
0 2 1|/-[121021010]
0 1 0

And some distance function d(x4, x3)

Which quantifies the “distance” between x; and x,

Goal: Find all pairs of data points (x;, x;) that are within some distance
threshold d(x;, x;) < s

Note: Naive solution would take O(N?) ®

where N is the number of data points

+MAGIC: This can be done in O(N)!!

How?
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Distance Measures

< Goal: Find near-neighbors in high-dim. space

We formally define “near neighbors” as points that are a “small
distance” apart

< For each application, we first need to define what “distance” means
< Today: Jaccard distance/similarity

The Jaccard similarity of two sets is the size of their intersection
divided by the size of their union:
sim(Cy, Cy) = |CiNGC,|/|CuCy|

Jaccard distance: d(C,, C,) =1 - |C;nC,|/|C,uC,|

3 in intersection

8 in union

Jaccard similarity= 3/8
Jaccard distance = 5/8
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Task: Finding Similar Documents

< Goal: Given a large number (N in the millions or billions) of documents,
find “near duplicate” pairs-

< Applications:
Mirror websites, or approximate mirrors
Don’t want to show both in search results
Similar news articles at many news sites
Cluster articles by “same story”

< Problems:
Many small pieces of one document can appear out of order in another

Too many documents to compare all pairs
Documents are so large or so many that they cannot fit in main memory
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3 Essential Steps for Similar Docs

Shingling: Convert documents to sets

Min-Hashing: Convert large sets to short signatures, while
preserving similarity

Locality-Sensitive Hashing: Focus on pairs of signatures likely to
be from similar documents

> Candidate pairs!
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Documents as High-Dim Data

Step 1: Shingling: Convert documents to sets

Simple approaches:
Document = set of words appearing in document
Document = set of “important” words
Don’t work well for this application. Why?

Need to account for ordering of words!
A different way: Shingles!
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Define: Shingles

< A k-shingle (or k-gram) for a document is a sequence of k tokens that
appears in the doc

Tokens can be characters, words or something else, depending on the
application

Assume tokens = characters for examples

< Example: k=2; document D, = abcab
Set of 2-shingles: S(D,) = {ab, bc, ca}

Option: Shingles as a bag (multiset), count ab twice: S’(D,) = {ab, bc, ca,
ab}
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Shingles and Similarity

Documents that are intuitively similar will have many shingles in

common.

Changing a word only affects k-shingles within distance k-1 from the

word.

Reordering paragraphs only affects the 2k shingles that cross

paragraph boundaries.

Example: k=3, “The do
chased the cat”.

g which ¢

hased the cat” versus “The dog that

Only 3-shingles replaced are g_w, _wh, whi, hic, ich, ch_, and

h_c.
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Compressing Shingles

To compress long shingles, we can hash them to (say) 4 bytes

Represent a document by the set of hash values of its k-shingles

Idea: Two documents could (rarely) appear to have shingles in
common, when in fact only the hash-values were shared

Example: k=2; document D,= abcab
Set of 2-shingles: S(D,) = {ab, bc, ca}
Hash the singles: h(D,) = {1, 5, 7}
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Similarity Metric for Shingles

< Document D, is a set of its k-shingles C,=S(D,)

< Equivalently, each document is a
0/1 vector in the space of k-shingles

Each unique shingle is a dimension

Vectors are very sparse
< A natural similarity measure is the Jaccard similarity:

sim(D,, D,) = [C,nC,|/|C,UC,|
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Working Assumption

< Documents that have lots of shingles in common have similar
text, even if the text appears in different order

< If we pick k too small, then we would expect most sequences of k
characters to appear in most documents

We could have documents whose shingle-sets had high Jaccard
similarity, yet the documents had none of the same sentences or
even phrases

Extreme case: when we use k = 1, almost all Web pages will have
high similarity.

< Caveat: You must pick k large enough, or most documents will have
most shingles

k =5 is OK for short documents
k = 10 is better for long documents
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Motivation for Minhash/LSH

Suppose we need to find near-duplicate documents among N = 1 million
documents

Naively, we would have to compute pairwise Jaccard similarities for every
pair of docs

N(N —1)/2 = 5*10%! comparisons
At 10° secs/day and 10° comparisons/sec, it would take 5 days

For N = 10 million, it takes more than a year...

7.23



Docu- W :m

The set Signatures:
of strings short integer
of length k vectors that
that appear represent the
in the doc- sets, and
ument reflect their
similarity

Step 2: Minhashing: Convert large sets
to short signatures, while preserving
similarity




Encoding Sets as Bit Vectors

Many similarity problems can be
formalized as finding subsets that
have significant intersection

Encode sets using 0/1 (bit, boolean) vectors
One dimension per element in the universal set

Interpret set intersection as bitwise AND, and
set union as bitwise OR

Example: C; =10111; C, = 10011
Size of intersection = 3; size of union = 4,
Jaccard similarity (not distance) = 3/4
Distance: d(C,,C,) = 1 — (Jaccard similarity) = 1/4
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From Sets to Boolean Matrices

< Rows = elements (shingles)

< Columns = sets (documents)

1inrow e and column sifand only ifeis a
member of s

Column similarity is the Jaccard similarity of the
corresponding sets (rows with value 1)

Shingles

Typical matrix is sparse!

% Each document is a column:

7.26
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From Sets to Boolean Matrices

< Example: S; ={a, d}, S, ={c}, S;={b,d, e}, and S, = {a, c, d}

Flement Sl SQ 53 S4
a 1 0O 0 1
b 0 O 1 0O
C 0 1 0 1
d 1 0 1 1
e 0 0 1 0O
sim(S,, S;) =7

Size of intersection = 1; size of union = 4,
Jaccard similarity (not distance) = 1/4

d(S;, S3) = 1 — (Jaccard similarity) = 3/4
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Outline: Finding Similar Columns

< So far:
Documents — Sets of shingles
Represent sets as boolean vectors in a matrix

< Next goal: Find similar columns while computing small signatures
Similarity of columns == similarity of signatures
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Outline: Finding Similar Columns

< Next Goal: Find similar columns, Small signatures
< Naive approach:

1) Signatures of columns: small summaries of columns

2) Examine pairs of signatures to find similar columns

Essential: Similarities of signatures and columns are related

3) Optional: Check that columns with similar signatures are really similar
< Warnings:

Comparing all pairs may take too much time: Job for LSH

These methods can produce false negatives, and even false positives (if
the optional check is not made)
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Hashing Columns (Signatures)

< Key idea: “hash” each column C to a small signature h(C), such that:
(1) h(C) is small enough that the signature fits in RAM
(2) sim(C,, C,) is the same as the “similarity” of signatures h(C,) and h(C,)

< Goal: Find a hash function h(-) such that:
If sim(C,,C,) is high, then with high prob. h(C,) = h(C,)
If sim(C,,C,) is low, then with high prob. h(C,) # h(C,)

< Hash docs into buckets. Expect that “most” pairs of near duplicate docs

hash into the same bucket!
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Min-Hashing

% Goal: Find a hash function h(-) such that:
if sim(C,,C,) is high, then with high prob. h(C,) = h(C,)
if sim(C,,C,) is low, then with high prob. h(C,) # h(C,)

% Clearly, the hash function depends on the similarity metric:
Not all similarity metrics have a suitable hash function

< There is a suitable hash function for the Jaccard similarity: Min-Hashing

7.31



*

&

L)

Min-Hashing

Imagine the rows of the boolean matrix permuted under random
permutation z

Define a “hash” function h_(C) = the index of the first (in the
permuted order wt) row in which column C has value 1:

h,(C) = min, #C)

Use several (e.g., 100) independent hash functions (that is,
permutations) to create a signature of a column
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Min-Hashing Example

0[A] D] 0
o[0]1]1
O <6> 3[1(1]2
ol1[0]1
ofofo]1
1] 1]0]o0
O|O0|l1]0 Signature Matrix

Input Matrix
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Min-Hashing Example

ol1|l1]0

olo]1]1

T ToToTo 3 (11112
ol1]0][1 2 |1
JIEE

@Al Dlolo

OO0 @ 0 Signature Matrix

Input Matrix
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Min-Hashing Example

0[1][1]0

olo|(1) 1
®O<O>O (1|1 ]2
ol1]0]1 2 |1
0j{ojof(1) 1|5]|3]2
1|(1) ofo0

O|O0|l1]0 Signature Matrix

Input Matrix
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Permutation

Input

Note: Another (equivalent) way is to

M i n_H aSh i ng Exan store row indexes: |l ISHIENIS)

2 3 1 3

2"d element of the permutation
is the firstto maptoal

7étrix (Shing

ocuments
) Signhature matrix M

43| [1¥]o |1_|o
N
2| \1\0 0 |4
17 1.0 |10
3(2| [0 |1 0\4\&> 7
6|6 0 1 0 1 \4”‘ element of the permutation
is the firstto maptoal
/7I1] (2 (O (1 |0
5191 |1 |0 (1 |0
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The Min-Hash Property

< Choose a random permutation «
% Claim: Prh,(C,) = h,(C,)] = sim(C,, C,)
% Why?
Let X be a doc (set of shingles), ye X is a shingle
Then: Pr[r(y) = min(rn(X))] = 1/|X|
It is equally likely that any y e X is mapped to the min element
Lety be s.t. n(y) = min(n(C,UC,))
Then either: n(y) = min(n(C,)) ify € C,, or
n(y) = min(z(C,)) ify e C,
So the prob. that both are true Is the prob.y e C; " C, Er G e

Pr[min(m(C,))=min(n(C5))]=|C,NC,l/|C,;UC,|= sim(C,, C;)  cols had to have
1 at position y

PRI O O| L, | O| O
Ok, O, O O
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Four Types of Rows

< Given cols C; and C,, rows may be classified as:

e g
A 1 1
B 1 0
C 0 1
D 0 0)

a = # rows of type A, etc.
<+ Note: sim(C,, C,) = a/(a +b +c)
< Then: Pr[h(C,) = h(C,)] = Sim(C,, C,)
Look down the cols C,; and C, until we see a 1

If it's a type-A row, then h(C,) = h(C,)
If a type-B or type-C row, then not
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Similarity for Signatures

Permutation ®  Input matrix (Shingles x Documents)

Signhature matrix M

l a3l [1 Jo 1 [o
3121141 [1 |0 |0 |1
711171 (O |1 |0 |1 BE 5
61(31/2] [O |1 |0 |1 >
1116ll6 O (1 |0 |1 Similarities:
1-3 24 1-2 34

5017021 11 10 (1 |0 Col/Col |0.75 075 0 O

Sig/Sig [0.67 100 0 O
41515 11 [0 |1 |0
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Similarity for Signatures

We know: Pr[h_(C,) = h_(C,)] = sim(C,, C,)
Now generalize to multiple hash functions

The similarity of two signatures is the fraction of the hash
functions in which they agree

Note: Because of the Min-Hash property, the similarity of columns is
the same as the expected similarity of their signatures
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Min-Hash Signatures

Pick K=100 random permutations of the rows

Think of sig(C) as a column vector

sig(C)[i] = according to the i-th permutation, the index of the first row that has a
1 in column C

s1i9(C)[1] = min (m;(C))

Note: The sketch (signature) of document C is small ~100 bytes!

We achieved our goal! We “compressed” long bit vectors into short
signatures
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Implementation Trick

< Permuting rows even once is prohibitive
< Row hashing!

Pick K =100 hash functions k;

Ordering under k; gives a random row permutation!
< One-pass implementation

For each column C and hash-func. k; keep a “slot” for the min-hash
value

Initialize all sig(C)[i] = «
Scan rows looking for 1s
Suppose row j has 1 in column C

Then for each k; : How to pick a random
i i i : _ : hash function h(x)?

If k,(J) < sig(C)[i], then sig(C)[i] « ki)  Universal hashing:
h.p(X)=((a-x+b) mod p) mod N
where:

a,b ... random integers

p ... prime number (p > N)
7.42



Implementation Example

Row || S| S22 | S35 Sa||lx+1 modb | 3xz+1 mod5
0 1 010 1 1 1
1 0 0 1 0 2 4
2 0 110 1 3 2
3 1 0 1 1 4 0
4 0 0 1 0 0 3

0 0. Initialize all sig(C)[i] = | Si| 92| S5 | S

hi
ho

S Ol BNC Ol BNC Ol BNC. )
S Ol BNC Ol BNC Ol BNC. )

Si | S2 | S3 | Sa

< Row 0: we see that the values of h,(0) and

h,(0) are both 1, thus sig(S,)[0] = 1,
sig(Sy[1] = 1, sig(S,)[0] = 1, sig(S,)[1] = 1,

% Row 1, we see hy(1) = 2 and h,(1) = 4, | S1 | S

thus sig(S;)[0] = 2, sig(S;)[1] = 4 ha
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Implementation Example

Row || S| S22 1S3 S4lz+1 modb | 3z+1 mod 5
0 1 0 0 1 1 1
1 0 0 1 0 2 4
2 0 1 0 1 3 2
3 1 0 1 1 4 0
4 0 0 1 0 0 3
% Row 2: h,(2) = 3 and h,(2) = 2, thus : I il | % | S; | 814
sig(S,)[0] = 3, sig(S,)[1] = 2, no update for S, hi. 1 ‘ 5 ‘ 4 ‘ 1

< Row 3: h;(3) =4 and h,(3) = 0, update
sig(Sy)[1] = 0, sig(S;)[1] = 0, sig(S,)[1] = 0, ha

< Row 4: h,(4) = 0 and h,(4) = 3, update
sig(S3)[0] = 0, ho
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Implementation Example

Row || S| S22 | S35 Sa||lx+1 modb | 3xz+1 mod5
0 1 0] 0 1 1 1
1 0 0 1 0 2 4
2 0 110 1 3 2
3 1 0 1 1 4 0
4 0 0 1 0 0 3

< We can estimate the Jaccard similarities of the underlying sets from this
signature matrix.

Signature matrix: SIM(S,;, S,;) = 1.0
Jaccard Similarity: SIM(S,, S,) = 2/3
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< Chapter 3 of Mining of Massive Datasets.
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End of Chapter 7.1
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