
COMP9313: Big Data Management

Lecturer: Xin Cao
Course web site: http://www.cse.unsw.edu.au/~cs9313/

7.2

Chapter 8.1: Finding Similar Items

7.3

A Common Metaphor

❖ Many problems can be expressed as finding “similar” sets:

➢ Find near-neighbors in high-dimensional space

❖ Examples:

➢ Pages with similar words

 For duplicate detection, classification by topic

➢ Customers who purchased similar products

 Products with similar customer sets

➢ Images with similar features

 Google image search

7.4

Images with Similar Features

7.5

Similarity Search in One Dimensional Space

❖ Just numbers, use binary search, binary search tree, B+-Tree…

❖ The essential idea behind: objects can be sorted

7.6

Similarity Search in 2D Space

❖ k nearest neighbour (kNN) query: find the top-k nearest spatial object

to the query location

❖ E.g., find the top-5 closest restaurants to UNSW

7.7

Similarity Search in 2D Space

❖ In Euclidean Space

q

p1

p2

p6

p5

p4p3

p7

7.8

Similarity Search in 2D Space

❖ In road networks: Distance is computed based on the network

distance (such as the length of the shortest path)

3

5

2

4

2

6

1

9
4 6

4

n1

n
2

n
3

n
4

n
5

n
6

n
7

n
8 n

9

p
1p

2

p
3

p
4

p
5

q

p5 is the closest in the spatial network setting

p1 is the closest in the Euclidean space

7.9

The Problem in 2D Space

❖ Euclidean space

➢ Grid index

➢ Quad-tree

➢ k-d tree

➢ R-tree (R+-tree, R*-tree, etc.)

➢ m-tree, x-tree, … …

➢ Space filing curves: Z-order, Hilbert order, … …

❖ Road Networks

➢ G-tree

➢ Contraction Hierarchy

➢ 2-hop labeling

➢ … …

7.10

Curse of Dimensionality

❖ Refers to various phenomena that arise in high dimensional spaces

that do not occur in low dimensional settings.

❖ Specifically, refers to the decrease in performance of similarity search

query processing when the dimensionality increases.

❖ In high dimensional space, almost all points are far away from each

other.

➢ To find the top-10 nearest neighbors, what is the length of the

average neighborhood cube?

7.11

Problem

❖ Given: High dimensional data points 𝒙𝟏, 𝒙𝟐, …

➢ For example: Image is a long vector of pixel colors
1 2 1
0 2 1
0 1 0

→ [1 2 1 0 2 1 0 1 0]

❖ And some distance function 𝒅(𝒙𝟏, 𝒙𝟐)

➢ Which quantifies the “distance” between 𝒙𝟏 and 𝒙𝟐

❖ Goal: Find all pairs of data points (𝒙𝒊, 𝒙𝒋) that are within some distance

threshold 𝒅 𝒙𝒊, 𝒙𝒋 ≤ 𝒔

❖ Note: Naïve solution would take 𝑶 𝑵𝟐 

where 𝑵 is the number of data points

❖MAGIC: This can be done in 𝑶 𝑵 !!

How?

7.12

Distance Measures

❖ Goal: Find near-neighbors in high-dim. space

➢ We formally define “near neighbors” as points that are a “small

distance” apart

❖ For each application, we first need to define what “distance” means

❖ Today: Jaccard distance/similarity

➢ The Jaccard similarity of two sets is the size of their intersection

divided by the size of their union:

sim(C1, C2) = |C1C2|/|C1C2|

➢ Jaccard distance: d(C1, C2) = 1 - |C1C2|/|C1C2|

3 in intersection

8 in union

Jaccard similarity= 3/8

Jaccard distance = 5/8

7.13

Task: Finding Similar Documents

❖ Goal: Given a large number (𝑵 in the millions or billions) of documents,

find “near duplicate” pairs·

❖ Applications:

➢ Mirror websites, or approximate mirrors

 Don’t want to show both in search results

➢ Similar news articles at many news sites

 Cluster articles by “same story”

❖ Problems:

➢ Many small pieces of one document can appear out of order in another

➢ Too many documents to compare all pairs

➢ Documents are so large or so many that they cannot fit in main memory

7.14

3 Essential Steps for Similar Docs

1. Shingling: Convert documents to sets

2. Min-Hashing: Convert large sets to short signatures, while

preserving similarity

3. Locality-Sensitive Hashing: Focus on pairs of signatures likely to

be from similar documents

➢ Candidate pairs!

7.15

The Big Picture

Docu-

ment

The set

of strings

of length k

that appear

in the doc-

ument

Signatures:

short integer

vectors that

represent the

sets, and

reflect their

similarity

Locality-

Sensitive

Hashing

Candidate

pairs:

those pairs

of signatures

that we need

to test for

similarity

Step 1: Shingling: Convert documents to

sets

Docu-

ment

The set

of strings

of length k

that appear

in the doc-

ument

7.17

Documents as High-Dim Data

❖ Step 1: Shingling: Convert documents to sets

❖ Simple approaches:

➢ Document = set of words appearing in document

➢ Document = set of “important” words

➢ Don’t work well for this application. Why?

❖ Need to account for ordering of words!

❖ A different way: Shingles!

7.18

Define: Shingles

❖ A k-shingle (or k-gram) for a document is a sequence of k tokens that

appears in the doc

➢ Tokens can be characters, words or something else, depending on the

application

➢ Assume tokens = characters for examples

❖ Example: k=2; document D1 = abcab

Set of 2-shingles: S(D1) = {ab, bc, ca}

➢ Option: Shingles as a bag (multiset), count ab twice: S’(D1) = {ab, bc, ca,

ab}

7.19

Shingles and Similarity

❖ Documents that are intuitively similar will have many shingles in

common.

❖ Changing a word only affects k-shingles within distance k-1 from the

word.

❖ Reordering paragraphs only affects the 2k shingles that cross

paragraph boundaries.

❖ Example: k=3, “The dog which chased the cat” versus “The dog that

chased the cat”.

➢ Only 3-shingles replaced are g_w, _wh, whi, hic, ich, ch_, and

h_c.

19

7.20

Compressing Shingles

❖ To compress long shingles, we can hash them to (say) 4 bytes

❖ Represent a document by the set of hash values of its k-shingles

➢ Idea: Two documents could (rarely) appear to have shingles in

common, when in fact only the hash-values were shared

❖ Example: k=2; document D1= abcab

Set of 2-shingles: S(D1) = {ab, bc, ca}

Hash the singles: h(D1) = {1, 5, 7}

7.21

Similarity Metric for Shingles

❖ Document D1 is a set of its k-shingles C1=S(D1)

❖ Equivalently, each document is a

0/1 vector in the space of k-shingles

➢ Each unique shingle is a dimension

➢ Vectors are very sparse

❖ A natural similarity measure is the Jaccard similarity:

 sim(D1, D2) = |C1C2|/|C1C2|

7.22

Working Assumption

❖ Documents that have lots of shingles in common have similar

text, even if the text appears in different order

❖ If we pick k too small, then we would expect most sequences of k

characters to appear in most documents

➢ We could have documents whose shingle-sets had high Jaccard

similarity, yet the documents had none of the same sentences or

even phrases

➢ Extreme case: when we use k = 1, almost all Web pages will have

high similarity.

❖ Caveat: You must pick k large enough, or most documents will have

most shingles

➢ k = 5 is OK for short documents

➢ k = 10 is better for long documents

7.23

Motivation for Minhash/LSH

❖ Suppose we need to find near-duplicate documents among 𝑵 = 𝟏 million

documents

❖ Naïvely, we would have to compute pairwise Jaccard similarities for every

pair of docs

➢ 𝑵(𝑵 − 𝟏)/𝟐 ≈ 5*1011 comparisons

➢ At 105 secs/day and 106 comparisons/sec, it would take 5 days

❖ For 𝑵 = 𝟏𝟎 million, it takes more than a year…

Step 2: Minhashing: Convert large sets

to short signatures, while preserving

similarity

Docu-

ment

The set

of strings

of length k

that appear

in the doc-

ument

Signatures:

short integer

vectors that

represent the

sets, and

reflect their

similarity

7.25

Encoding Sets as Bit Vectors

❖ Many similarity problems can be

formalized as finding subsets that

have significant intersection

❖ Encode sets using 0/1 (bit, boolean) vectors

➢ One dimension per element in the universal set

❖ Interpret set intersection as bitwise AND, and

set union as bitwise OR

❖ Example: C1 = 10111; C2 = 10011

➢ Size of intersection = 3; size of union = 4,

➢ Jaccard similarity (not distance) = 3/4

➢ Distance: d(C1,C2) = 1 – (Jaccard similarity) = 1/4

7.26

From Sets to Boolean Matrices

❖ Rows = elements (shingles)

❖ Columns = sets (documents)

➢ 1 in row e and column s if and only if e is a

member of s

➢ Column similarity is the Jaccard similarity of the

corresponding sets (rows with value 1)

➢ Typical matrix is sparse!

❖ Each document is a column:

0101

0111

1001

1000

1010

1011

0111

Documents

S
h
in

g
le

s

7.27

From Sets to Boolean Matrices

❖ Example: S1 = {a, d}, S2 = {c}, S3 = {b, d, e}, and S4 = {a, c, d}

➢ sim(S1, S3) = ?

 Size of intersection = 1; size of union = 4,

Jaccard similarity (not distance) = 1/4

 d(S1, S3) = 1 – (Jaccard similarity) = 3/4

7.28

Outline: Finding Similar Columns

❖ So far:

➢ Documents → Sets of shingles

➢ Represent sets as boolean vectors in a matrix

❖ Next goal: Find similar columns while computing small signatures

➢ Similarity of columns == similarity of signatures

7.29

Outline: Finding Similar Columns

❖ Next Goal: Find similar columns, Small signatures

❖ Naïve approach:

➢ 1) Signatures of columns: small summaries of columns

➢ 2) Examine pairs of signatures to find similar columns

 Essential: Similarities of signatures and columns are related

➢ 3) Optional: Check that columns with similar signatures are really similar

❖ Warnings:

➢ Comparing all pairs may take too much time: Job for LSH

 These methods can produce false negatives, and even false positives (if

the optional check is not made)

7.30

Hashing Columns (Signatures)

❖ Key idea: “hash” each column C to a small signature h(C), such that:

➢ (1) h(C) is small enough that the signature fits in RAM

➢ (2) sim(C1, C2) is the same as the “similarity” of signatures h(C1) and h(C2)

❖ Goal: Find a hash function h(·) such that:

➢ If sim(C1,C2) is high, then with high prob. h(C1) = h(C2)

➢ If sim(C1,C2) is low, then with high prob. h(C1) ≠ h(C2)

❖ Hash docs into buckets. Expect that “most” pairs of near duplicate docs

hash into the same bucket!

7.31

Min-Hashing

❖ Goal: Find a hash function h(·) such that:

➢ if sim(C1,C2) is high, then with high prob. h(C1) = h(C2)

➢ if sim(C1,C2) is low, then with high prob. h(C1) ≠ h(C2)

❖ Clearly, the hash function depends on the similarity metric:

➢ Not all similarity metrics have a suitable hash function

❖ There is a suitable hash function for the Jaccard similarity: Min-Hashing

7.32

Min-Hashing

❖ Imagine the rows of the boolean matrix permuted under random

permutation 

❖ Define a “hash” function h(C) = the index of the first (in the

permuted order ) row in which column C has value 1:

 h (C) = min (C)

❖ Use several (e.g., 100) independent hash functions (that is,

permutations) to create a signature of a column

7.33

Min-Hashing Example

33

0

0

00

00

00

0

00 0

0

000

0

1

11

1

11

11

1

11

1

2

3

4

5

6

7

11 23

Input Matrix

Signature Matrix

7.34

Min-Hashing Example

34

0

0

00

00

00

0

00 0

0

000

0

1

11

1

11

11

1

11

1

2

3

4

5

6

7 1

2

3

4

5

6

7

122 3

11 23

Input Matrix

Signature Matrix

7.35

Min-Hashing Example

35

0

0

00

00

00

0

00 0

0

000

0

1

11

1

11

11

1

11

1

2

3

4

5

6

7

1

2

3

4

5

6

7 1

2

3

4

5

6

7

122 3

11 23

351 2

Input Matrix

Signature Matrix

7.36

Min-Hashing Example

3

4

7

2

6

1

5

Signature matrix M

1212

5

7

6

3

1

2

4

1412

4

5

1

6

7

3

2

2121

2nd element of the permutation

is the first to map to a 1

4th element of the permutation

is the first to map to a 1

0101

0101

1010

1010

1010

1001

0101

Input matrix (Shingles x Documents) Permutation 

Note: Another (equivalent) way is to

store row indexes: 1 5 1 5

2 3 1 3

6 4 6 4

7.37

The Min-Hash Property

❖ Choose a random permutation 

❖ Claim: Pr[h(C1) = h(C2)] = sim(C1, C2)

❖ Why?

➢ Let X be a doc (set of shingles), y X is a shingle

➢ Then: Pr[(y) = min((X))] = 1/|X|

 It is equally likely that any y X is mapped to the min element

➢ Let y be s.t. (y) = min((C1C2))

➢ Then either: (y) = min((C1)) if y  C1 , or

 (y) = min((C2)) if y  C2

➢ So the prob. that both are true is the prob. y  C1  C2

➢ Pr[min((C1))=min((C2))]=|C1C2|/|C1C2|= sim(C1, C2)

01

10

00

11

00

00

One of the two

cols had to have

1 at position y

7.38

Four Types of Rows

❖ Given cols C1 and C2, rows may be classified as:

 C1 C2

 A 1 1

 B 1 0

 C 0 1

 D 0 0

➢ a = # rows of type A, etc.

❖ Note: sim(C1, C2) = a/(a +b +c)

❖ Then: Pr[h(C1) = h(C2)] = Sim(C1, C2)

➢ Look down the cols C1 and C2 until we see a 1

➢ If it’s a type-A row, then h(C1) = h(C2)

If a type-B or type-C row, then not

7.39

Similarity for Signatures

Signature matrix M

1212

5

7

6

3

1

2

4

1412

4

5

1

6

7

3

2

2121

0101

0101

1010

1010

1010

1001

0101

Input matrix (Shingles x Documents)

3

4

7

2

6

1

5

Permutation 

Similarities:

 1-3 2-4 1-2 3-4

Col/Col 0.75 0.75 0 0

Sig/Sig 0.67 1.00 0 0

7.40

Similarity for Signatures

❖ We know: Pr[h(C1) = h(C2)] = sim(C1, C2)

❖ Now generalize to multiple hash functions

❖ The similarity of two signatures is the fraction of the hash

functions in which they agree

❖ Note: Because of the Min-Hash property, the similarity of columns is

the same as the expected similarity of their signatures

7.41

Min-Hash Signatures

❖ Pick K=100 random permutations of the rows

❖ Think of sig(C) as a column vector

❖ sig(C)[i] = according to the i-th permutation, the index of the first row that has a

1 in column C

 sig(C)[i] = min (i(C))
❖ Note: The sketch (signature) of document C is small ~𝟏𝟎𝟎 bytes!

❖ We achieved our goal! We “compressed” long bit vectors into short

signatures

7.42

Implementation Trick

❖ Permuting rows even once is prohibitive

❖ Row hashing!

➢ Pick K = 100 hash functions ki

➢ Ordering under ki gives a random row permutation!

❖ One-pass implementation

➢ For each column C and hash-func. ki keep a “slot” for the min-hash

value

➢ Initialize all sig(C)[i] = 

➢ Scan rows looking for 1s

 Suppose row j has 1 in column C

 Then for each ki :

– If ki(j) < sig(C)[i], then sig(C)[i]  ki(j)

How to pick a random

hash function h(x)?

Universal hashing:

ha,b(x)=((a·x+b) mod p) mod N

where:

a,b … random integers

p … prime number (p > N)

7.43

Implementation Example

0. Initialize all sig(C)[i] = 

❖ Row 0: we see that the values of h1(0) and

h2(0) are both 1, thus sig(S1)[0] = 1,

 sig(S1)[1] = 1, sig(S4)[0] = 1, sig(S4)[1] = 1,

❖ Row 1, we see h1(1) = 2 and h2(1) = 4，

 thus sig(S3)[0] = 2, sig(S3)[1] = 4

7.44

Implementation Example

❖ Row 2: h1(2) = 3 and h2(2) = 2, thus

 sig(S2)[0] = 3, sig(S2)[1] = 2, no update for S4

❖ Row 3: h1(3) = 4 and h2(3) = 0, update

 sig(S1)[1] = 0, sig(S3)[1] = 0, sig(S4)[1] = 0,

❖ Row 4: h1(4) = 0 and h2(4) = 3, update

 sig(S3)[0] = 0,

7.45

Implementation Example

❖ We can estimate the Jaccard similarities of the underlying sets from this

signature matrix.

➢ Signature matrix: SIM(S1, S4) = 1.0

➢ Jaccard Similarity: SIM(S1, S4) = 2/3

7.46

References

❖ Chapter 3 of Mining of Massive Datasets.

End of Chapter 7.1

	Slide 1: COMP9313: Big Data Management Lecturer: Xin Cao Course web site: http://www.cse.unsw.edu.au/~cs9313/
	Slide 2
	Slide 3: A Common Metaphor
	Slide 4: Images with Similar Features
	Slide 5: Similarity Search in One Dimensional Space
	Slide 6: Similarity Search in 2D Space
	Slide 7: Similarity Search in 2D Space
	Slide 8: Similarity Search in 2D Space
	Slide 9: The Problem in 2D Space
	Slide 10: Curse of Dimensionality
	Slide 11: Problem
	Slide 12: Distance Measures
	Slide 13: Task: Finding Similar Documents
	Slide 14: 3 Essential Steps for Similar Docs
	Slide 15: The Big Picture
	Slide 16
	Slide 17: Documents as High-Dim Data
	Slide 18: Define: Shingles
	Slide 19: Shingles and Similarity
	Slide 20: Compressing Shingles
	Slide 21: Similarity Metric for Shingles
	Slide 22: Working Assumption
	Slide 23: Motivation for Minhash/LSH
	Slide 24
	Slide 25: Encoding Sets as Bit Vectors
	Slide 26: From Sets to Boolean Matrices
	Slide 27: From Sets to Boolean Matrices
	Slide 28: Outline: Finding Similar Columns
	Slide 29: Outline: Finding Similar Columns
	Slide 30: Hashing Columns (Signatures)
	Slide 31: Min-Hashing
	Slide 32: Min-Hashing
	Slide 33: Min-Hashing Example
	Slide 34: Min-Hashing Example
	Slide 35: Min-Hashing Example
	Slide 36: Min-Hashing Example
	Slide 37: The Min-Hash Property
	Slide 38: Four Types of Rows
	Slide 39: Similarity for Signatures
	Slide 40: Similarity for Signatures
	Slide 41: Min-Hash Signatures
	Slide 42: Implementation Trick
	Slide 43: Implementation Example
	Slide 44: Implementation Example
	Slide 45: Implementation Example
	Slide 46: References
	Slide 47: End of Chapter 7.1

