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Final exam

❖ Final written exam (50 pts)

❖ Six questions in total on five topics

❖ Four hours (Do not wait for the last minute to submit!)

❖ Online exam. Submit through Moodle

❖ If you are ill on the day of the exam, do not attend the exam – will not 

accept any medical special consideration claims from people who 

already attempted the exam.
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myExperience Survey
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Chapters Required in Exam

❖ Hadoop MapReduce (Chapters 1, 2, and 3)

➢ HDFS

➢ MapReduce Concepts and Mechanism

➢ MapReduce algorithm design

❖ Spark (Chapters 4 and 5)

➢ RDD

➢ DataFrame

❖ Mining Data Streams (Chapter 6)

❖ Finding Similar Items (Chapter 7) 

❖ Graph Data Management (Chapter 8)
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Exam Questions

❖ Question 1: HDFS, MapReduce, and Spark concepts

❖ Question 2: MapReduce algorithm design (pseudo-code only)

❖ Question 3: Spark algorithm design

➢ RDD

➢ DataFrame

❖ Question 4 Finding Similar Items 

➢ Shingling, Min Hashing, LSH

❖ Question 5 Mining Data Streams

➢  Sampling, DGIM, Bloom filter, Finding frequent items FM-sketch

❖ Question 6 Graph Data Management
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Question 0

❖ (a) (2 marks) Explain the data flow in MapReduce using the word 

count problem as an example. 

❖ (b) (2 marks) Explain the data flow in Spark using the word count 

problem as an example. 
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Map and Reduce Functions

❖ Programmers specify two functions:

➢ map (k1, v1) → list [<k2, v2>]

 Map transforms the input into key-value pairs to process

➢ reduce (k2, [v2]) → [<k3, v3>]

 Reduce aggregates the list of values for each key

 All values with the same key are sent to the same reducer

❖ Optionally, also:

➢ combine (k2, [v2]) → [<k3, v3>]

 Mini-reducers that run in memory after the map phase

 Used as an optimization to reduce network traffic

➢ partition (k2, number of partitions) → partition for k2

 Often a simple hash of the key, e.g., hash(k2) mod n

 Divides up key space for parallel reduce operations

➢ Grouping comparator: controls which keys are grouped together 

for a single call to Reducer.reduce() function

❖ The execution framework handles everything else…
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Combiners

❖ Often a Map task will produce many pairs of the form (k,v1), (k,v2), … 

for the same key k

➢ E.g., popular words in the word count example

❖ Combiners are a general mechanism to reduce the amount of 

intermediate data, thus saving network time 

➢ They could be thought of as “mini-reducers”

❖ Warning!

➢ The use of combiners must be thought carefully

 Optional in Hadoop: the correctness of the algorithm cannot 

depend on computation (or even execution) of the combiners

 A combiner operates on each map output key. It must have the 

same output key-value types as the Mapper class.

 A combiner can produce summary information from a large 

dataset because it replaces the original Map output

➢ Works only if reduce function is commutative and associative

 In general, reducer and combiner are not interchangeable
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Partitioner

❖ Partitioner controls the partitioning of the keys of the intermediate 

map-outputs. 

➢ The key (or a subset of the key) is used to derive the partition, 

typically by a hash function. 

➢ The total number of partitions is the same as the number of 

reduce tasks for the job. 

 This controls which of the m reduce tasks the intermediate key 

(and hence the record) is sent to for reduction.

❖ System uses HashPartitioner by default:

➢ hash(key) mod R

❖ Sometimes useful to override the hash function:

➢ E.g., hash(hostname(URL)) mod R ensures URLs from a host 

end up in the same output file

❖ Job sets Partitioner implementation (in Main)
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MapReduce Data Flow
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MapReduce Algorithm Design Patterns

❖ In-mapper combining, where the functionality of the combiner is 

moved into the mapper. 

➢ Scalability issue (not suitable for huge data) : More memory 

required for a mapper to store intermediate results

❖ The related patterns “pairs” and “stripes” for keeping track of joint 

events from a large number of observations.

❖ “Order inversion”, where the main idea is to convert the sequencing 

of computations into a sorting problem. 

➢ You need to guarantee that all key-value pairs relevant to the 

same term are sent to the same reducer

❖ “Value-to-key conversion”, which provides a scalable solution for 

secondary sort. 



12

Sample Questions

❖ Assume that you are given a data set crawled from a location-based 

social network, in which each line of the data is in format of (userID, a 

list of locations the user has visited <loc1, loc2, …>). Your task is to 

compute for each location the set of users who have visited it, and the 

users are sorted in ascending order according to their IDs. 
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Solution

class Question1

method map(self, userID, list of locations)

foreach loc in the list of locations 

Emit(“loc, userID”, “”)

method reduce_init(self)

current_loc = “”

current_list = []

method reduce(self, key, value)

loc, userID = key.split(“,”)

if loc != current_loc

if current_loc!=“”

Emit(current_loc, current_list)

current_list = []

current_list.add(userID)

current_loc=loc                        

else 

current_list.add(userID)

method reduce_final(self)

Emit(current_loc, current_list)

In JOBCONF, configure:

'mapreduce.map.output.key.field.separator':’,’, 

'mapreduce.partition.keypartitioner.options':'-k1,1’,

'mapreduce.partition.keycomparator.options':'-k1,1 -k2,2'
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Sample Questions

❖ Given a table shown as below, find out the person(s) with the 

maximum salary in each department (employees could have the same 

salary). 

❖ Solution:

➢ Mapper: for each record, Emit(department + “,” + salary, name)

➢ Combiner: find out all persons with the local maximum salary for 

each department

➢ Reducer: receives data ordered by (department, salary), the first 

one is the maximum salary in a department. Check the next one 

until reaching a smaller salary and ignore all remaining. Save all 

persons with this maximum salary in the department

➢ JOBCONF: key partitioned by “-k1,1”, sorted by “-k1,1 -k2,2n”

EmployeeID Name DepartmentID Salary

001 Emma 1 100,000

002 Helen 2 85,000

003 Jack 3 85,000

004 James 1 110,000
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Sample Questions

❖ Given a large text dataset, find the top-k frequent terms (considering 

that you can utilize multiple reducers, and the efficiency of your 

method is evaluated).

❖ Solution:

➢ Two rounds: 

 First round compute term frequency in multiple reducers, and 

each reducer only stores local top-k. 

 Second round get the local top-k and compute the final top-k 

using a single reducer.
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Data Sharing in MapReduce

Slow due to replication, serialization, and disk IO

❖ Complex apps, streaming, and interactive queries all need one thing 

that MapReduce lacks:

Efficient primitives for data sharing
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Data Sharing in Spark Using RDD

10-100× faster than network and disk
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What is RDD

❖ Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-

Memory Cluster Computing. Matei Zaharia, et al. NSDI’12

➢ RDD is a distributed memory abstraction that lets programmers 

perform in-memory computations on large clusters in a fault-

tolerant manner.

❖ Resilient

➢ Fault-tolerant, is able to recompute missing or damaged partitions 

due to node failures.

❖ Distributed

➢ Data residing on multiple nodes in a cluster.

❖ Dataset

➢ A collection of partitioned elements, e.g. tuples or other objects 

(that represent records of the data you work with).

❖ RDD is the primary data abstraction in Apache Spark and the core of 

Spark. It enables operations on collection of elements in parallel.
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RDD Operations

❖ Transformation: returns a new RDD. 

➢ Nothing gets evaluated when you call a Transformation function, it 

just takes an RDD and return a new RDD.

➢ Transformation functions include map, filter, flatMap, groupByKey, 

reduceByKey, aggregateByKey, filter, join, etc.

❖ Action: evaluates and returns a new value. 

➢ When an Action function is called on a RDD object, all the data 

processing queries are computed at that time and the result value 

is returned.

➢ Action operations include reduce, collect, count, first, take, 

countByKey, foreach, saveAsTextFile, etc.
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DataFrame

❖ DataFrame more like a traditional database of two-dimensional form, 

in addition to data, but also to grasp the structural information of the 

data, that is, schema

➢ RDD[Person] although with Person for type parameters, but the 

Spark framework itself does not understand internal structure of 

Person class

➢ DataFrame has provided a detailed structural information, making 

Spark SQL can clearly know what columns are included in the 

dataset, and what is the name and type of each column. Thus, 

Spark SQL query optimizer can target optimization
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Sample Questions

❖ RDD: Given a large text file, your task is to find out the top-k most 

frequent co-occurring term pairs. The co-occurrence of (w, u) is 

defined as: u and w appear in the same line (this also means that (w, 

u) and (u, w) are treated equally). Your Spark program should 

generate a list of k key-value pairs ranked in descending order 

according to the frequencies, where the keys are the pair of terms and 

the values are the co-occurring frequencies (Hint: you need to define 

a function which takes an array of terms as input and generate all 

possible pairs).

val textFile = sc.textFile(inputFile)

val words = textFile.map(_.split(“ “).toLowerCase)

// fill your code here, and store the result in a pair RDD topk

topk.foreach(x => println(x._1, x._2))
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Sample Questions

❖ Given a set of marks from different courses (the input format is as 

shown in the left column), the task is to: compute average marks for 

every course and sort the result by course_name in alphabetical 

order. 

❖ Solution:

Input: Output:

student1:course1,90;course2,92;course3,80;course4,

79;course5,93

student2:course1,92;course2,77;course5,85

student3:course3,64;course4,97;course5,82

course1:91

course2:84.5

course3:72

course4:88

course5:86.67

fileDF = spark.read.text("file:///home/comp9313/tinydoc")

student = fileDF.select(split(fileDF['value'], ':').getItem(0).alias('sid'), split(fileDF['value'], 

':').getItem(1).alias('courses’))

scDF = student.withColumn('course', explode(split('courses', ';’)))

scDF2 = scDF.select(split(scDF['course'], ',').getItem(0).alias('cname'), split(scDF['course'], 

',').getItem(1).alias('mark’))

avgDF = scDF2.groupBy('cname').agg(avg('mark')).orderBy('cname')
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Sampling Data Streams

❖ Since we can not store the entire stream, one obvious approach is to store a 
sample

❖ Two different problems:

➢ (1) Sample a fixed proportion of elements in the stream (say 1 in 10)

 As the stream grows the sample also gets bigger

➢ (2) Maintain a random sample of fixed size over a potentially infinite 
stream

 As the stream grows, the sample is of fixed size

 At any “time” t we would like a random sample of s elements

– What is the property of the sample we want to maintain?
For all time steps t, each of t elements seen so far has 
equal probability of being sampled
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Sample Questions

❖ Use an example to explain the reservoir sampling algorithm

➢ Store all the first s elements of the stream to S

➢ Suppose we have seen n-1 elements, and now the nth element arrives (n > 

s)

✓ With probability s/n, keep the nth element, else discard it

✓ If we picked the nth element, then it replaces one of the s elements in 

the sample S, picked uniformly at random
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DGIM Algorithm

❖ Idea: Instead of summarizing fixed-length blocks, summarize blocks 

with specific number of 1s:

➢ Let the block sizes (number of 1s) increase exponentially

❖ When there are few 1s in the window, block sizes stay small, so errors 

are small

❖ Timestamps:

➢ Each bit in the stream has a timestamp, starting from 1, 2, …

➢ Record timestamps modulo N (the window size), so we can 

represent any relevant timestamp in 𝑶(log𝟐𝑵) bits

 E.g., given the windows size 40 (N), timestamp 123 will be 

recorded as 3, and thus the encoding is on 3 rather than 123

1001010110001011010101010101011010101010101110101010111010100010110010

N
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Example: Updating Buckets

1001010110001011010101010101011010101010101110101010111010100010110010

0010101100010110101010101010110101010101011101010101110101000101100101

0010101100010110101010101010110101010101011101010101110101000101100101

0101100010110101010101010110101010101011101010101110101000101100101101

0101100010110101010101010110101010101011101010101110101000101100101101

0101100010110101010101010110101010101011101010101110101000101100101101

Current state of the stream:

Bit of value 1 arrives

Two white buckets get merged into a yellow bucket

Next bit 1 arrives, new orange white is created, then 0 comes, then 1:

Buckets get merged…

State of the buckets after merging
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Sample Questions

Suppose we are maintaining a count of 1s using the DGIM method. We 

represent a bucket by (i, t), where i is the number of 1s in the bucket and t 

is the bucket timestamp (time of the most recent 1). 

Consider that the current time is 200, window size is 60, and the current 

list of buckets is: (16, 148) (8, 162) (8, 177) (4, 183) (2, 192) (1, 197) (1, 

200). At the next ten clocks, 201 through 210, the stream has 

0101010101. What will the sequence of buckets be at the end of these 

ten inputs?
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Solution

❖ There are 5 1s in the stream. Each one will update to windows to be:

➢ (1) (16, 148)(8, 162)(8, 177)(4, 183)(2, 192)(1, 197)(1, 200), (1, 202)

 => (16, 148)(8, 162)(8, 177)(4, 183)(2, 192)(2, 200), (1, 202)

➢ (2) (16, 148)(8, 162)(8, 177)(4, 183)(2, 192)(2, 200), (1, 202), (1, 204)

➢ (3) (16, 148)(8, 162)(8, 177)(4, 183)(2, 192)(2, 200), (1, 202), (1, 204), (1; 

206)

 => (16, 148)(8, 162)(8, 177)(4, 183)(2, 192)(2, 200), (2, 204), (1, 206)

 => (16, 148)(8, 162)(8, 177)(4, 183)(4, 200), (2, 204), (1, 206)

➢ (4) Windows Size is 60, so (16,148) should be dropped.

 (16, 148)(8, 162)(8, 177)(4, 183)(4, 200), (2, 204), (1, 206), (1, 208) => 

(8, 162)(8, 177)(4, 183)(4, 200), (2, 204), (1, 206), (1, 208)

➢ (5) (8, 162)(8, 177)(4, 183)(4, 200), (2, 204), (1, 206), (1, 208), (1, 210)

 => (8, 162)(8, 177)(4, 183)(4, 200), (2, 204), (2, 208), (1, 210)
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Bloom Filter

❖ Consider: |S| = m, |B| = n

❖ Use k independent hash functions h1 ,…, hk

❖ Initialization:

➢ Set B to all 0s

➢ Hash each element s S using each hash function hi, set B[hi(s)] 

= 1   (for each i = 1,.., k)

❖ Run-time:

➢ When a stream element with key x arrives

 If B[hi(x)] = 1 for all i = 1,..., k then declare that x is in S

– That is, x hashes to a bucket set to 1 for every hash 

function hi(x)

 Otherwise discard the element x
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Counting Bloom Filter

❖ Bloom filters can handle insertions, but not deletions.

❖ If deleting xi means resetting 1s to 0s, then deleting xi will “delete” xj.  

❖ Can Bloom filters handle deletions?

➢ Use Counting Bloom Filters to track insertions/deletions

0 1 0 0 1 0 1 0 0 1 1 1 0 1 1 0B

xi    xj



31

Counting Bloom Filters

Start with an n bit array, filled with 0s.

Hash each item xj in S for k times.  If Hi(xj) = a, add 1 to B[a].

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0B

0 3 0 0 1 0 2 0 0 3 2 1 0 2 1 0B

To delete xj decrement the corresponding counters.

0 2 0 0 0 0 2 0 0 3 2 1 0 1 1 0B

Can obtain a corresponding Bloom filter by reducing to 0/1.

0 1 0 0 0 0 1 0 0 1 1 1 0 1 1 0B
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Sample Questions

❖ Consider a Bloom filter of size m = 7 (i.e., 7 bits) and 2 hash functions 

that both take a string (lowercase) as input:

 h1(str) = ∑(c in str)(c-'a') mod 7

 h2(str) = str.length mod 7

     Here, c - ‘a’ is used to compute the position of the letter c in the 26 

alphabetical letters, e.g., h1(“bd”) = (1 + 3) mod 7 = 4.

➢ (i) Given a set of string S = {“hi”, “big”, “data”}, show the update of 

the Bloom filter

➢ (ii) Given a string “spark”, use the Bloom filter to check whether it 

is contained in S. 

➢ (iii) Given S in (i) and the Bloom filter with 7 bits, what is the 

percentage of the false positive probability (a correct expression is 

sufficient: you need not give the actual number)?
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Solution

❖ (i) 

❖ (ii) h1 (spark) = (18 + 15 + 0 + 17 + 10) mod 7 = 4

          h2 (spark) = 5 mod 7 = 5

          Not in S since the 4th bit is 1 but the 5th bit is 0

❖ (iii) k – # of hash functions; m – # of inserting elements; n - # of bits

(𝟏 − 𝒆−
𝒌𝒎
𝒏 )𝒌= 𝟎. 𝟑𝟑𝟏𝟑

hi big data

h1 (7+8) mod 7 = 1 (1+8+6) mod 7 = 1 (3+0+19+0) mod 7 = 1

h2 2 mod 7 = 2 3 mod 7 = 3 4 mod 7 = 4
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Approximate Heavy Hitters

❖ A more general problem: find all elements with counts > n/k (k>=2)

➢ There can be at most k-1 such values; and there might be none

➢ Trivial if we have enough storage

❖ There is no exact algorithm that solves the Heavy Hitters problems in 

one pass while using a sublinear amount of auxiliary space

❖ Relaxation, the ε-approximate heavy hitters problem:

➢ If an element has count > n/k, it must be reported, together with its 

estimated count with (absolute) error < εn

➢ If an element has count < (1/k − ε) n, it cannot be reported

➢ For elements in between, don’t care

❖ In fact, we will estimate all counts with at most εn error
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Misra-Gries Algorithm

❖ Keep k-1 different candidates in hand (thus with space O(k）) 

❖ For each element in stream: 

➢ If item is monitored, increase its counter 

➢ Else, if < k-1 items monitored, add new element with count 1 

➢ Else, decrease all counts by 1, and delete element with count 0

❖ Each decrease can be charged against k arrivals of different items, so 

no item with frequency N/k is missed

❖ But false positive (elements with count smaller than n/k) may appear 

in the result
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Misra-Gries Algorithm

❖ [1,1,2,3,4,5,1,1,1,5,3,3,1,1,2] with k=3, we want to find element that 

occurred more than 15/3 = 5 times.
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Lossy Counting

❖ Step 1: Divide the incoming data 

stream into windows, and each 

window contains 1/ε elements

❖ Step 2: Increment the frequency 

count of each item according to 

the new window values. After 

each window, decrement all 

counters by 1. Drop elements with 

counter 0.

❖ Step 3: Repeat – Update counters 

and after each window, decrement 

all counters by 1
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Lossy Counting
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The Space-Saving Algorithm

❖ Keep k = 1/ε item names and counts, initially zero 

❖ On seeing new item: 

➢ If it has a counter, increment counter 

➢ If not, replace item with least count, increment count

❖ Analysis:

➢ Smallest counter value, min, is at most εn

➢ True count of an uncounted item is between 0 and min

➢ Any item x whose true count > εn is stored

❖ So: Find all items with count > εn, error in counts ≤ εn

http://romania.a

mazon.com/tech

on/presentations

/DataStreamsAl

gorithms_Florin

Manolache.pdf

http://romania.amazon.com/techon/presentations/DataStreamsAlgorithms_FlorinManolache.pdf
http://romania.amazon.com/techon/presentations/DataStreamsAlgorithms_FlorinManolache.pdf
http://romania.amazon.com/techon/presentations/DataStreamsAlgorithms_FlorinManolache.pdf
http://romania.amazon.com/techon/presentations/DataStreamsAlgorithms_FlorinManolache.pdf
http://romania.amazon.com/techon/presentations/DataStreamsAlgorithms_FlorinManolache.pdf
http://romania.amazon.com/techon/presentations/DataStreamsAlgorithms_FlorinManolache.pdf
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Count-Min Sketch

❖ In general, model input stream as a vector x of dimension U

➢ x[i] is frequency of element I

❖ The count-min sketch has two parameters, the number of buckets w 

and the number of hash functions d

❖ Creates a small summary as an array of w × d in size

❖ Use d hash function to map vector entries to [1..w]
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Count-Min Sketch

❖ The count-min-sketch supports two operations: Inc(x) and Count(x)

❖ The operation Count(x) is supposed to return the frequency count of x, 

meaning the number of times that Inc(x) has been invoked in the past

❖ The code for Inc(x) is simply: 

➢ for i = 1, 2, . . . , d: increment CMS[i][hi(x)]

❖ The code for Count(x) is simply:

➢ return 𝑚𝑖𝑛𝑖=1
𝑑 CMS[i][hi(x)]

https://www.geeksforgeeks.org/count-min-sketch-in-java-with-examples/

https://www.geeksforgeeks.org/count-min-sketch-in-java-with-examples/
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Sample Questions

❖ Assume that we have 5 buckets and three hash functions:

➢ h0(str) = str.length * 2 mod 5

➢ h1(str) = str.length mod 5

➢ h2(str) = (str[0]-‘a’) mod 5

      Given you a stream of terms: “big”, “data”, “data”, “set”, “data”, 

“analytics”, show the steps of building the CM-Sketch. Then, use the built 

CM-sketch to get the count for word “data”.

❖ Solution:

➢ big: h0 = 1, h1 = 3, h2 = 1

➢ data: h0 = 3, h1 = 4, h2 = 3

➢ set: h0 = 1, h1 = 3, h2 = 3

➢ analytics: h0 = 3, h1 = 4, h2 = 0
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Solution
b0 b1 b2 b3 b4

h0 0 0 0 0 0

h1 0 0 0 0 0

h2 0 0 0 0 0

b0 b1 b2 b3 b4

h0 0 1 0 0 0

h1 0 0 0 1 0

h2 0 1 0 0 0

b0 b1 b2 b3 b4

h0 0 1 0 1 0

h1 0 0 0 1 1

h2 0 1 0 1 0

b0 b1 b2 b3 b4

h0 0 1 0 2 0

h1 0 0 0 1 2

h2 0 1 0 2 0

b0 b1 b2 b3 b4

h0 0 2 0 2 0

h1 0 0 0 2 2

h2 0 1 0 3 0

b0 b1 b2 b3 b4

h0 0 2 0 3 0

h1 0 0 0 2 3

h2 0 1 0 4 0

b0 b1 b2 b3 b4

h0 0 2 0 4 0

h1 0 0 0 2 4

h2 1 1 0 4 0

Initially:

big:

data:

data:

set:

data:

analytics:

Min(CMS[0][3], CMS[1][4], CMS[2][3])=4, which is not the correct count.
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Finding Similar Items

❖ The Big Picture

Docu-

ment

The set

of strings

of length k

that appear

in the doc-

ument

Signatures:

short integer

vectors that

represent the

sets, and

reflect their

similarity

Locality-

Sensitive

Hashing

Candidate

pairs:

those pairs

of signatures

that we need

to test for

similarity
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Shingling

❖ A k-shingle (or k-gram) for a document is a sequence of k tokens that 

appears in the doc

➢ Tokens can be characters, words or something else, depending on the 

application

➢ Assume tokens = characters for examples

❖ Example: k=2; document D1 = abcab

Set of 2-shingles: S(D1) = {ab, bc, ca}

❖ Documents that are intuitively similar will have many shingles in common.

➢ Example: k=3, “The dog which chased the cat” versus “The dog that 

chased the cat”.

 Only 3-shingles replaced are g_w, _wh, whi, hic, ich, ch_, and h_c.
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Min-Hash Signatures

❖ Pick K=100 random permutations of the rows

❖ Think of sig(C) as a column vector

❖ sig(C)[i] = according to the i-th permutation, the index of the first row that has a 

1 in column C

  sig(C)[i] = min (i(C))
❖ Note: The sketch (signature) of document C is small  ~𝟏𝟎𝟎 bytes!

❖ We achieved our goal! We “compressed” long bit vectors into short 

signatures
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Implementation Example

0. Initialize all sig(C)[i] = 

❖ Row 0: we see that the values of h1(0) and 

h2(0) are both 1, thus sig(S1)[0] = 1,

      sig(S1)[1] = 1, sig(S4)[0] = 1, sig(S4)[1] = 1, 

❖ Row 1, we see h1(1) = 2 and h2(1) = 4，

     thus sig(S3)[0] = 2, sig(S3)[1] = 4
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Implementation Example

❖ Row 2: h1(2) = 3 and h2(2) = 2, thus

     sig(S2)[0] = 3, sig(S2)[1] = 2, no update for S4

❖  Row 3: h1(3) = 4 and h2(3) = 0, update

      sig(S1)[1] = 0, sig(S3)[1] = 0, sig(S4)[1] = 0,

❖ Row 4: h1(4) = 0 and h2(4) = 3, update

     sig(S3)[0] = 0,
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Partition M into b Bands

Signature matrix  M

r rows

per band

b  bands

One

signature
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Matrix M

r rows b bands

Buckets

Columns 2 and 6

are probably identical 

(candidate pair)

Columns 6 and 7 are

surely different.

Hashing Bands
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b bands, r rows/band

❖ The probability that the minhash signatures for the documents agree 

in any one particular row of the signature matrix is t (sim(C1, C2) )

❖ Pick any band (r rows)

➢ Prob. that all rows in band equal = tr 

➢ Prob. that some row in band unequal = 1 - tr 

❖ Prob. that no band identical  = (1 - tr)b

❖ Prob. that at least 1 band identical = 1 - (1 - tr)b
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Sample Questions

❖ k-Shingles:

Consider two documents A and B. Each document's number of token is 

O(n). What is the runtime complexity of computing A and B's k-shingle 

resemblance (using Jaccard similarity)? Assume that comparison of two 

k-shingles to assess their equivalence is O(k). Express your answer in 

terms of n and k.

Answer: 

Assuming n >> k,

Time to create shingles = O(n)

Time to find intersection (using brute force algorithm) = O(kn2)

Time to find union = O(1) // computed as: n + n - |intersection|

Total time = (kn2)
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Sample Questions

❖ MinHash: 

We want to compute min-hash signature for two columns, C1 and C2

using two pseudo-random permutations of columns using the following 

function: 

h1(n) = 3n + 2 mod 7

h2(n) = 2n - 1 mod 7

Here, n is the row number in original ordering. Instead of explicitly 

reordering the columns for each hash function, we use the 

implementation discussed in class, in which we read each data in a 

column once in a sequential order, and update the min hash signatures 

as we pass through them. 

Complete the steps of the algorithm and give the resulting signatures for 

C1 and C2.
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Solution

h1(0) = 2 ∞ 2

h2(0) = 6 ∞ 6

h1(1) = 5 5 2

h2(1) = 1 1 6

h1(2) = 1 5 1

h2(2) = 3 1 3

h1(4) = 0 0 0

h2(4) = 0 0 0

Sig1 Sig2

∞ ∞

 ∞ ∞

h1(n) = 3n + 2 mod 7

h2(n) = 2n - 1 mod 7
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Sample Questions

❖ Suppose we wish to find similar sets, and we do so by minhashing the 

sets 10 times and then applying locality-sensitive hashing using 5 

bands of 2 rows (minhash values) each. If two sets had Jaccard 

similarity 0.6, what is the probability that they will be identified in the 

locality-sensitive hashing as candidates (i.e. they hash at least once to 

the same bucket)? You may assume that there are no coincidences, 

where two unequal values hash to the same bucket. A correct 

expression is sufficient: you need not give the actual number.

❖ Solution: 1 - (1 - tr)b

➢ 1 - (1 – 0.62)5
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Simple Recursive Formulation

❖ Each link’s vote is proportional to the importance of its source page

❖ If page j with importance rj has n out-links, each link gets rj / n votes

❖ Page j’s own importance is the sum of the votes on its in-links

j

ki

rj/3

rj/3rj/3
rj = ri/3+rk/4

ri/3 rk/4
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PageRank: Problems

2 problems:

❖ (1) Some pages are dead ends (have no out-links)

➢ Random walk has “nowhere” to go to

➢ Such pages cause importance to “leak out”

❖ (2) Spider traps: (all out-links are within the group)

➢ Random walked gets “stuck” in a trap

➢ And eventually spider traps absorb all importance

Dead end
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PageRank: The Complete Algorithm

❖ Input: Graph 𝑮 and parameter 𝜷

➢ Directed graph 𝑮 (can have spider traps and dead ends)

➢ Parameter 𝜷

❖ Output: PageRank vector 𝒓𝒏𝒆𝒘

➢ Set: 𝑟𝑗
𝑜𝑙𝑑  =

1

𝑁

➢ repeat until convergence: σ𝑗 𝑟𝑗
𝑛𝑒𝑤 − 𝑟𝑗

𝑜𝑙𝑑 > 𝜀

 ∀𝑗: 𝒓′𝒋
𝒏𝒆𝒘 = σ𝒊→𝒋 𝜷

𝒓𝒊
𝒐𝒍𝒅

𝒅𝒊
 

           𝒓′𝒋
𝒏𝒆𝒘 = 𝟎  if in-degree of 𝒋 is 0

 Now re-insert the leaked PageRank:

    ∀𝒋: 𝒓𝒋
𝒏𝒆𝒘 = 𝒓′

𝒋
𝒏𝒆𝒘

+
𝟏−𝑺

𝑵

 𝒓𝒐𝒍𝒅 = 𝒓𝒏𝒆𝒘

where: 𝑆 = σ𝑗 𝑟′𝑗
𝑛𝑒𝑤

If the graph has no dead-ends then the amount of leaked PageRank is 1-β. But since we have dead-ends 

the amount of leaked PageRank may be larger. We have to explicitly account for it by computing S.
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Sparse Matrix Encoding

❖ Encode sparse matrix using only nonzero entries

➢ Space proportional roughly to number of links

➢ Say 10N, or 4*10*1 billion = 40GB

➢ Still won’t fit in memory, but will fit on disk

0 3 1, 5, 7

1 5 17, 64, 113, 117, 245

2 2 13, 23

source

node degree destination nodes
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Basic Algorithm: Update Step

❖ Assume enough RAM to fit rnew into memory

➢ Store rold and matrix M on disk

❖ 1 step of power-iteration is:

0 3 1, 5, 6

1 4 17, 64, 113, 117

2 2 13, 23

source degree destination0
1

2

3
4

5

0
1

2

3
4

5

6

rnew rold

Initialize all entries of rnew = (1-) / N

For each page i (of out-degree di):

  Read into memory: i, di, dest1, …, destdi, rold(i)

  For j = 1…di

      rnew(destj) +=  rold(i) / di
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PageRank Pseudo-Code



62

PageRank in MapReduce (One Iteration)

n5 [n1, n2, n3]n1 [n2, n4] n2 [n3, n5] n3 [n4] n4 [n5]

n2 n4 n3 n5 n1 n2 n3n4 n5

n2 n4n3 n5n1 n2 n3 n4 n5

n5 [n1, n2, n3]n1 [n2, n4] n2 [n3, n5] n3 [n4] n4 [n5]

Map

Reduce
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Complete PageRank

❖ Two additional complexities

➢ What is the proper treatment of dangling nodes?

➢ How do we factor in the random jump factor?

❖ Solution: 

➢ If a node’s adjacency list is empty, distribute its value to all nodes 

evenly.

 In mapper, for such a node i, emit (nid m, ri/N) for each node m 

in the graph

➢ Add the teleport value

 In reducer, M.PageRank =   * s + (1- ) / N 
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Sample Questions

❖ A directed graph G has the set of nodes {1,2,3,4,5,6} with the edges 

arranged as follows.

❖ Set up the PageRank equations, assuming β = 0.8 (jump probability = 

1- β). Denote the PageRank of node a by r(a).
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Solution
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Thank you!
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