
COMP9313: Big Data Management

Lecturer: Xin Cao
Course web site: http://www.cse.unsw.edu.au/~cs9313/

4.2

Chapter 4.1: Spark I

4.3

Part 1: Spark Introduction

4.4

Limitations of MapReduce

❖ MapReduce greatly simplified big data analysis on large, unreliable

clusters. It is great at one-pass computation.

❖ But as soon as it got popular, users wanted more:

➢ More complex, multi-pass analytics (e.g. ML, graph)

➢ More interactive ad-hoc queries

➢ More real-time stream processing

❖ All 3 need faster data sharing across parallel jobs

➢ One reaction: specialized models for some of these apps, e.g.,

 Pregel (graph processing)

 Storm (stream processing)

4.5

Limitations of MapReduce

❖ As a general programming model:

➢ It is more suitable for one-pass computation on a large dataset

➢ Hard to compose and nest multiple operations

➢ No means of expressing iterative operations

❖ As implemented in Hadoop

➢ All datasets are read from disk, then stored back on to disk

➢ All data is (usually) triple-replicated for reliability

➢ Not easy to write MapReduce programs using Java

Benefits of data flow: runtime can decide

where to run tasks and can automatically

recover from failures

4.6

Data Sharing in MapReduce

Slow due to replication, serialization, and disk IO

❖ Complex apps, streaming, and interactive queries all need one thing

that MapReduce lacks:

Efficient primitives for data sharing

4.7

Data Sharing in MapReduce

❖ Iterative jobs involve a lot of disk I/O for each repetition

❖ Interactive queries and online processing involves lots of disk I/O

4.8

Hardware for Big Data

Lots of hard drives Lots of CPUs

And lots of memory!

4.9

Goals of Spark

❖ Keep more data in-memory to improve the performance!

❖ Extend the MapReduce model to better support two common classes

of analytics apps:

➢ Iterative algorithms (machine learning, graphs)

➢ Interactive data mining

❖ Enhance programmability:

➢ Integrate into Scala programming language

➢ Allow interactive use from Scala interpreter

4.10

Data Sharing in Spark Using RDD

10-100× faster than network and disk

4.11

What is Spark

❖ One popular answer to “What’s beyond MapReduce?”

❖ Open-source engine for large-scale distributed data processing

➢ Supports generalized dataflows

➢ Written in Scala, with bindings in Java, Python, and R

❖ Brief history:

➢ Developed at UC Berkeley AMPLab in 2009

➢ Open-sourced in 2010

➢ Became top-level Apache project in February 2014

➢ Commercial support provided by DataBricks

4.12

What is Spark

❖ Fast and expressive cluster computing system interoperable with

Apache Hadoop

❖ Improves efficiency through:

➢ In-memory computing primitives

➢ General computation graphs

❖ Improves usability through:

➢ Rich APIs in Scala, Java, Python

➢ Interactive shell

Up to 100× faster
(10× on disk)

Often 5× less code

4.13

What is Spark

❖ Spark is not

➢ a modified version of Hadoop

➢ dependent on Hadoop because it has its own cluster management

➢ Spark uses Hadoop for storage purpose only

❖ Spark’s design philosophy centers around four key characteristics:

➢ Speed

➢ Ease of use

➢ Modularity

➢ Extensibility

4.14

Speed

❖ Its internal implementation benefits immensely from the performance

improvement of CPUs and memory.

➢ The framework is optimized to take advantage of memory, multiple

cores, and the underlying Unix-based operating system

❖ Spark builds its query computations as a directed acyclic graph

➢ Tasks can execute in parallel across workers on the cluster

❖ It has a physical execution engine which generates compact code for

execution

4.15

Ease of Use

❖ Spark achieves simplicity by providing a fundamental abstraction of a

simple logical data structure called a Resilient Distributed Dataset

(RDD)

❖ Since Spark 2.x, DataFrames and Datasets APIs have been

developed upon RDD

❖ By providing a set of transformations and actions as operations,

Spark offers a simple programming model that you can use to build

big data applications in familiar languages.

4.16

Modularity

❖ Spark operations can be applied across many types of workloads and

expressed in any of the supported programming languages: Scala,

Java, Python, SQL, and R.

❖ Spark offers unified libraries with well-documented APIs that include

the following modules as core components: Spark SQL, Spark

Structured Streaming, Spark MLlib, and GraphX, combining all the

workloads running under one engine.

❖ You can write a single Spark application that can do it all—no need for

distinct engines for disparate workloads, no need to learn separate

APIs.

4.17

Extensibility

❖ Spark focuses on its fast, parallel computation engine rather than on

storage.

➢ You can use Spark to read data stored in myriad sources—local

file systems, Apache Hadoop, Apache Cassandra, Apache

HBase, MongoDB, Apache Hive, RDBMSs, and more—and

process it all in memory.

❖ Spark’s DataFrameReaders and DataFrameWriters can also be

extended to read data from other sources, such as Apache Kafka,

Kinesis, Azure Storage, and Amazon S3

4.18

What is Spark

❖ Spark is the basis of a wide set of projects in the Berkeley Data

Analytics Stack (BDAS)

➢ Spark SQL (SQL on Spark)

➢ Spark Streaming (stream processing)

➢ GraphX (graph processing)

➢ MLlib (machine learning library)

Spark Core
(Scala, Python, Java, R, SQL)

Spark
Streaming

(real-time)

GraphX
(graph)

…

Spark SQL
(SQL)

MLlib
(machine
learning)

4.19

Spark’s Ecosystem of Connectors

❖ The community of Spark developers maintains a list of third-party

Spark packages as part of the growing ecosystem

4.20

Spark Ideas

❖ Expressive computing system, not limited to map-reduce model

❖ Facilitate system memory

➢ avoid saving intermediate results to disk

➢ cache data for repetitive queries (e.g. for machine learning)

❖ Layer an in-memory system on top of Hadoop.

❖ Achieve fault-tolerance by re-execution instead of replication

4.21

Spark Workflow

❖ A Spark program first creates a

SparkContext object

➢ Tells Spark how and where

to access a cluster

➢ Define RDDs

➢ Connect to several types of

cluster managers (e.g.,

YARN, Mesos, or its own

manager)

❖ Cluster manager:

➢ Allocate resources across

applications

❖ Spark executor:

➢ Run computations

➢ Access data storage

4.22

Download and Configure Spark

❖ Current version: 3.4.0. https://spark.apache.org/downloads.html

➢ You also need to install Java first

❖ After downloading the package, unpack it and then configure the path

variable in file ~/.bashrc

export SPARK_HOME=/home/comp9313/spark

export PATH=$SPARK_HOME/bin:$PATH

https://spark.apache.org/downloads.html

4.23

Spark Shell

❖ Spark comes with four widely used interpreters that act like interactive

“shells” and enable ad hoc data analysis: pyspark, spark-shell,

sparksql, and sparkR

4.24

Word Count in Spark (Python)

“to be or”

“not to be”

“to”
“be”
“or”

“not”
“to”
“be”

(to, 1)
(be, 1)
(or, 1)

(not, 1)
(to, 1)
(be, 1)

(be, 2)
(not, 1)

(or, 1)
(to, 2)

4.25

Word Count in Spark (Scala)

“to be or”

“not to be”

“to”
“be”
“or”

“not”
“to”
“be”

(to, 1)
(be, 1)
(or, 1)

(not, 1)
(to, 1)
(be, 1)

(be, 2)
(not, 1)

(or, 1)
(to, 2)

4.26

Part 2: Scala Introduction

4.27

Scala (Scalable language)

❖ Scala is a general-purpose programming language designed to

express common programming patterns in a concise, elegant, and

type-safe way

❖ Scala supports both Object Oriented Programming and Functional

Programming

❖ Scala is Practical

➢ Can be used as drop-in replacement for Java

 Mixed Scala/Java projects

➢ Use existing Java libraries

➢ Use existing Java tools (Ant, Maven, JUnit, etc…)

➢ Decent IDE Support (NetBeans, IntelliJ, Eclipse)

4.28

Why Scala

❖ Scala supports object-oriented programming. Conceptually, every

value is an object and every operation is a method-call. The language

supports advanced component architectures through classes and

traits

❖ Scala is also a functional language. Supports functions, immutable

data structures and preference for immutability over mutation

❖ Seamlessly integrated with Java

❖ Being used heavily for Big data, e.g., Spark, Kafka, etc.

4.29

Scala Basic Syntax

❖ When considering a Scala program, it can be defined as a collection

of objects that communicate via invoking each other’s methods.

❖ Object − same as in Java

❖ Class − same as in Java

❖ Methods − same as in Java

❖ Fields − Each object has its unique set of instant variables, which are

called fields. An object's state is created by the values assigned to

these fields.

❖ Traits − Like Java Interface. A trait encapsulates method and field

definitions, which can then be reused by mixing them into classes.

❖ Closure − A closure is a function, whose return value depends on the

value of one or more variables declared outside this function.

closure = function + enviroment

4.30

Object-Oriented Programming in Scala

❖ Scala is object-oriented, and is based on Java’s model

❖ An object is a singleton object (there is only one of it)

➢ Variables and methods in an object are somewhat similar to

Java’s static variables and methods

➢ Reference to an object’s variables and methods have the syntax

ObjectName.methodOrVariableName

➢ The name of an object should be capitalized

❖ A class may take parameters, and may describe any number of

objects

➢ The class body is the constructor, but you can have additional

constructors

➢ With correct use of val and var, Scala provides getters and

setters for class parameters

4.31

Scala is Statically Typed

❖ You don't have to specify a type in most cases

❖ Type Inference

val sum = 1 + 2 + 3

val nums = List(1, 2, 3)

val map = Map("abc" -> List(1,2,3))

Explicit Types

val sum: Int = 1 + 2 + 3

val nums: List[Int] = List(1, 2, 3)

val map: Map[String, List[Int]] = ...

4.32

Scala is High level

// Java – Check if string has uppercase character

boolean hasUpperCase = false;

for(int i = 0; i < name.length(); i++) {

if(Character.isUpperCase(name.charAt(i))) {

hasUpperCase = true;

break;

}

}

// Scala

val hasUpperCase = name.exists(_.isUpper)

4.33

Scala is Concise

// Java
public class Person {

private String name;

private int age;

public Person(String name, Int age) {

this.name = name;

this.age = age;

}

public String getName() { // name getter

return name;

}

public int getAge() { // age getter

return age;

}

public void setName(String name) { // name setter

this.name = name;

}

public void setAge(int age) { // age setter

this.age = age;

}

}

// Scala
class Person(var name: String, private var _age: Int) {
def age = _age // Getter for age
def age_=(newAge:Int) { // Setter for age

println("Changing age to: "+newAge)
_age = newAge

}
}

4.34

Variables and Values

❖ Variables: values stored can be changed

var foo = "foo"

foo = "bar" // okay

❖ Values: immutable variable

val foo = "foo"

foo = "bar" // nope

4.35

Scala is Pure Object Oriented

// Every value is an object

1.toString

// Every operation is a method call

1 + 2 + 3 → (1).+(2).+(3)

// Can omit . and ()

"abc" charAt 1 → "abc".charAt(1)

// Classes (and abstract classes) like Java

abstract class Language(val name:String) {

override def toString = name

}

// Example implementations

class Scala extends Language("Scala")

// Anonymous class

val scala = new Language("Scala") { /* empty */ }

4.36

Scala Traits

// Like interfaces in Java

trait JVM {

// But allow implementation

override def toString = super.toString+" runs on JVM" }

trait Static {

override def toString = super.toString+" is Static" }

// Traits are stackable

class Scala extends Language with JVM with Static {

val name = "Scala"

}

println(new Scala) → "Scala runs on JVM is Static"

4.37

Scala is Functional

❖ First-Class Functions. Functions are treated like objects:

➢ passing functions as arguments to other functions

➢ returning functions as the values from other functions

➢ assigning functions to variables or storing them in data structures

// Lightweight anonymous functions

(x:Int) => x + 1

// Calling the anonymous function

val plusOne = (x:Int) => x + 1

plusOne(5) → 6

4.38

Scala is Functional

❖ Closures: a function whose return value depends on the value of one

or more variables declared outside this function.

// plusFoo can reference any values/variables in scope

var foo = 1

val plusFoo = (x:Int) => x + foo

plusFoo(5) → 6

// Changing foo changes the return value of plusFoo

foo = 5

plusFoo(5) → 10

4.39

Scala is Functional

❖ Higher Order Functions

➢ A function that does at least one of the following:

 takes one or more functions as arguments

 returns a function as its result

val plusOne = (x:Int) => x + 1

val nums = List(1,2,3)

// map takes a function: Int => T

nums.map(plusOne) → List(2,3,4)

// Inline Anonymous

nums.map(x => x + 1) → List(2,3,4)

// Short form

nums.map(_ + 1) → List(2,3,4)

4.40

More Examples on Higher Order Functions

val nums = List(1,2,3,4)

// A few more examples for List class

nums.exists(_ == 2) → true

nums.find(_ == 2) → Some(2)

nums.indexWhere(_ == 2) → 1

// functions as parameters, apply f to the value “1”

def call(f: Int => Int) = f(1)

call(plusOne) → 2

call(x => x + 1) → 2

call(_ + 1) → 2

4.41

val basefunc = (x:Int) => ((y:Int) => x + y)

// interpreted by:

basefunc(x){

sumfunc(y){ return x+y;}

return sumfunc;

}

val closure1 = basefunc(1) closure1(5) = ?

6

val closure2 = basefunc(4) closure2(5) = ?

9

❖ basefunc returns a function, and closure1 and closure2 are of function

type.

❖ While closure1 and closure2 refer to the same function basefunc, the

associated environments differ, and the results are different

More Examples on Higher Order Functions

4.42

The Usage of “_” in Scala

❖ In anonymous functions, the “_” acts as a placeholder for parameters

nums.map(x => x + 1)

is equivalent to:

nums.map(_ + 1)

List(1,2,3,4,5).foreach(print(_))

is equivalent to:

List(1,2,3,4,5).foreach(a => print(a))

❖ You can use two or more underscores to refer different parameters.

val sum = List(1,2,3,4,5).reduceLeft(_+_)

is equivalent to:

val sum = List(1,2,3,4,5).reduceLeft((a, b) => a + b)

➢ The reduceLeft method works by applying the function/operation

you give it, and applying it to successive elements in the collection

4.43

Part 3: RDD Introduction

4.44

RDD: Resilient Distributed Datasets

❖ Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-

Memory Cluster Computing. Matei Zaharia, et al. NSDI’12

➢ RDD is a distributed memory abstraction that lets programmers

perform in-memory computations on large clusters in a fault-

tolerant manner.

❖ Resilient

➢ Fault-tolerant, is able to recompute missing or damaged partitions

due to node failures.

❖ Distributed

➢ Data residing on multiple nodes in a cluster.

❖ Dataset

➢ A collection of partitioned elements, e.g. tuples or other objects

(that represent records of the data you work with).

❖ RDD is the primary data abstraction in Apache Spark and the core of

Spark. It enables operations on collection of elements in parallel.

4.45

RDD: Resilient Distributed Datasets

❖ Resilient Distributed Datasets (RDDs)

➢ Distributed collections of objects that can be cached in memory

across cluster

➢ Manipulated through parallel operators

➢ Automatically recomputed on failure based on lineage

❖ RDDs can express many parallel algorithms, and capture many

current programming models

➢ Data flow models: MapReduce, SQL, …

➢ Specialized models for iterative apps: Pregel, …

4.46

RDD Traits

❖ In-Memory, i.e. data inside RDD is stored in memory as much (size)

and long (time) as possible.

❖ Immutable or Read-Only, i.e. it does not change once created and

can only be transformed using transformations to new RDDs.

❖ Lazy evaluated, i.e. the data inside RDD is not available or

transformed until an action is executed that triggers the execution.

❖ Cacheable, i.e. you can hold all the data in a persistent "storage" like

memory (default and the most preferred) or disk (the least preferred

due to access speed).

❖ Parallel, i.e. process data in parallel.

❖ Typed, i.e. values in a RDD have types, e.g. RDD[Long] or RDD[(Int,

String)].

❖ Partitioned, i.e. the data inside a RDD is partitioned (split into

partitions) and then distributed across nodes in a cluster (one partition

per JVM that may or may not correspond to a single node).

4.47

Working with RDDs

❖ Create an RDD from a data source

➢ by parallelizing existing collections (lists or arrays)

➢ by transforming an existing RDDs

➢ from files in HDFS or any other storage system

❖ Apply transformations to an RDD: e.g., map, filter

❖ Apply actions to an RDD: e.g., collect, count

❖ Users can control two other aspects:

➢ Persistence

➢ Partitioning

4.48

Creating RDDs

❖ From HDFS, text files, Amazon S3, Apache HBase, SequenceFiles,

any other Hadoop InputFormat

❖ Creating an RDD from a File

➢ val inputfile = sc.textFile("...", 4)

 RDD distributed in 4 partitions

 Elements are lines of input

 Lazy evaluation means no execution happens now

❖ Turn a collection into an RDD

➢ sc.parallelize([1, 2, 3]), creating from a Python list

➢ sc.parallelize(Array(“hello”, “spark”)), creating from a Scala Array

❖ Creating an RDD from an existing Hadoop InputFormat

➢ sc.hadoopFile(keyClass, valClass, inputFmt, conf)

4.49

RDD Operations

❖ Transformation: returns a new RDD.

➢ Nothing gets evaluated when you call a Transformation function, it

just takes an RDD and return a new RDD.

➢ Transformation functions include map, filter, flatMap, groupByKey,

reduceByKey, aggregateByKey, join, etc.

❖ Action: evaluates and returns a new value.

➢ When an Action function is called on a RDD object, all the data

processing queries are computed at that time and the result value

is returned.

➢ Action operations include reduce, collect, count, first, take,

countByKey, foreach, saveAsTextFile, etc.

4.50

Spark Transformations

❖ Create new datasets from an existing one

❖ Use lazy evaluation: results not computed right away – instead Spark

remembers set of transformations applied to base dataset

➢ Spark optimizes the required calculations

➢ Spark recovers from failures

❖ Some transformation functions

4.51

Spark Actions

❖ Cause Spark to execute recipe to transform source

❖ Mechanism for getting results out of Spark

❖ Some action functions

❖ Example: words.collect().foreach(println)

4.52

Example (Python)

❖ Web service is experiencing errors and an operators want to search

terabytes of logs in the Hadoop file system to find the cause.

➢ Line1: RDD backed by an HDFS file (base RDD lines not loaded in

memory)

➢ Line3: Asks for errors to persist in memory (errors are in RAM)

4.53

Example (Scala)

❖ Web service is experiencing errors and an operators want to search

terabytes of logs in the Hadoop file system to find the cause.

➢ Line1: RDD backed by an HDFS file (base RDD lines not loaded

in memory)

➢ Line3: Asks for errors to persist in memory (errors are in RAM)

//base RDD

val lines = sc.textFile(“hdfs://…”)

//Transformed RDD

val errors = lines.filter(_.startsWith(“Error”))

errors.persist()

errors.count()

errors.filter(_.contains(“HDFS”))

.map(_.split(‘\t’)(3))

.collect()

4.54

Lineage Graph

❖ RDDs keep track of lineage

❖ RDD has enough information about how it was derived from to

compute its partitions from data in stable storage.

❖ Example:

➢ If a partition of errors is lost, Spark rebuilds it by applying a filter

on only the corresponding partition of lines.

➢ Partitions can be recomputed in parallel on different nodes,

without having to roll back the whole program.

RDD1

RDD2

RDD3

RDD4

4.55

Deconstructed

//base RDD

lines = sc.textFile("hdfs://...")

//Transformed RDD

errors = lines.filter(lambda x: x.startswith("Error"))

errors.persist()

errors.count()

errors.filter(lambda x: "HDFS" in x).

map(lambda x: x.split('\t')[3]).

collect()

4.56

Deconstructed

//base RDD

lines = sc.textFile("hdfs://...")

//Transformed RDD

errors = lines.filter(lambda x: x.startswith("Error"))

errors.persist()

errors.count()

count() causes Spark to: 1) read

data; 2) sum within partitions; 3)

combine sums in driver

Put transform and action together:

errors.filter(lambda x: "HDFS" in x).map(lambda x: x.split('\t')[3]).collect()

4.57

RDD Persistence: Cache/Persist

❖ One of the most important capabilities in Spark

is persisting (or caching) a dataset in memory across operations.

❖ When you persist an RDD, each node stores any partitions of it. You

can reuse it in other actions on that dataset

❖ Each persisted RDD can be stored using a different storage level, e.g.

➢ MEMORY_ONLY:

 Store RDD as deserialized Java objects in the JVM.

 If the RDD does not fit in memory, some partitions will not be

cached and will be recomputed when they're needed.

 This is the default level.

➢ MEMORY_AND_DISK:

 If the RDD does not fit in memory, store the partitions that don't

fit on disk, and read them from there when they're needed.

❖ cache() = persist(StorageLevel.MEMORY_ONLY)

4.58

Why Persisting RDD?

lines = sc.textFile("hdfs://...")

errors = lines.filter(lambda x: x.startswith("Error"))

errors.persist()

errors.count()

❖ If you do errors.count() again, the file will be loaded again and

computed again.

❖ Persist will tell Spark to cache the data in memory, to reduce the data

loading cost for further actions on the same data

❖ erros.persist() will do nothing. It is a lazy operation. But now the RDD

says "read this file and then cache the contents". The action will

trigger computation and data caching.

4.59

References

❖ http://spark.apache.org/docs/latest/index.html

❖ http://www.scala-lang.org/documentation/

❖ http://www.scala-lang.org/docu/files/ScalaByExample.pdf

❖ A Brief Intro to Scala, by Tim Underwood.

❖ Learning Spark. 1st and 2nd Edition

http://spark.apache.org/docs/latest/index.html
http://www.scala-lang.org/documentation/
http://www.scala-lang.org/docu/files/ScalaByExample.pdf
https://www.slideshare.net/tpunder/a-brief-intro-to-scala
http://shop.oreilly.com/product/0636920028512.do

End of Chapter 4.1

	Slide 1: COMP9313: Big Data Management Lecturer: Xin Cao Course web site: http://www.cse.unsw.edu.au/~cs9313/
	Slide 2
	Slide 3
	Slide 4: Limitations of MapReduce
	Slide 5: Limitations of MapReduce
	Slide 6: Data Sharing in MapReduce
	Slide 7: Data Sharing in MapReduce
	Slide 8: Hardware for Big Data
	Slide 9: Goals of Spark
	Slide 10: Data Sharing in Spark Using RDD
	Slide 11: What is Spark
	Slide 12: What is Spark
	Slide 13: What is Spark
	Slide 14: Speed
	Slide 15: Ease of Use
	Slide 16: Modularity
	Slide 17: Extensibility
	Slide 18: What is Spark
	Slide 19: Spark’s Ecosystem of Connectors
	Slide 20: Spark Ideas
	Slide 21: Spark Workflow
	Slide 22: Download and Configure Spark
	Slide 23: Spark Shell
	Slide 24: Word Count in Spark (Python)
	Slide 25: Word Count in Spark (Scala)
	Slide 26
	Slide 27: Scala (Scalable language)
	Slide 28: Why Scala
	Slide 29: Scala Basic Syntax
	Slide 30: Object-Oriented Programming in Scala
	Slide 31: Scala is Statically Typed
	Slide 32: Scala is High level
	Slide 33: Scala is Concise
	Slide 34: Variables and Values
	Slide 35: Scala is Pure Object Oriented
	Slide 36: Scala Traits
	Slide 37: Scala is Functional
	Slide 38: Scala is Functional
	Slide 39: Scala is Functional
	Slide 40: More Examples on Higher Order Functions
	Slide 41: More Examples on Higher Order Functions
	Slide 42: The Usage of “_” in Scala
	Slide 43
	Slide 44: RDD: Resilient Distributed Datasets
	Slide 45: RDD: Resilient Distributed Datasets
	Slide 46: RDD Traits
	Slide 47: Working with RDDs
	Slide 48: Creating RDDs
	Slide 49: RDD Operations
	Slide 50: Spark Transformations
	Slide 51: Spark Actions
	Slide 52: Example (Python)
	Slide 53: Example (Scala)
	Slide 54: Lineage Graph
	Slide 55: Deconstructed
	Slide 56: Deconstructed
	Slide 57: RDD Persistence: Cache/Persist
	Slide 58: Why Persisting RDD?
	Slide 59: References
	Slide 60: End of Chapter 4.1

