Aims
This exercise aims to get you to:

« Install and configure Hadoop MapReduce
« Practice HDFS operations
« Test Hadoop MapReduce with the pseudo-distributed mode

Background

In the examples below, we have used the $ sign to represent the prompt from the command
interpreter (shell). The actual prompt may look quite different on your computer (e.g. it may
contain the computer's hostname, or your username, or the current directory name). Whenever
the word “edit” is used, this means that you could use your favorite text editor (e.g.vim,
emacs, gedit, etc.).

A virtual machine running Ubuntu 22.04 is provided. Both user name and password is
comp9313. You can download the image from the following links:

https://meqga.nz/file/Sglz1Jpb#Ay5i10C4EKIQqZVuVYDULG6hfO2LiBvsJXjTXX1gAnxrg

https://drive.google.com/file/d/1lymUkS422jiNnEKU2witPb2flL8wf6eME/view

The sudo password is also comp9313 in the system. Please follow the instructions in “VM
image.pdf” to download and configure the virtual machine.

Today’s lab aims to let you practice how to install and configure Hadoop.

Configure Hadoop and HDFS

0. Install Java (if already installed the correct version, you can skip this step)

Hadoop 3.3.2 requires Java 8 or 11. Install Java jdk by the following command:
$ sudo apt install openijdk-11-jdk
1. Download Hadoop and Configure HADOOP_HOME

Download the Hadoop package by the command:

$ wget https://dlcdn.apache.org/hadoop/common/hadoop-3.3.2/hadoop-3.3.2.tar.gz

Then unpack the package:

$ tar xvf hadoop-3.3.2.tar.gz

Now you have Hadoop installed under ~/hadoop-3.3.2. We need to configure this folder as
the working directory of Hadoop, i.e., xaboor_HoME.

https://mega.nz/file/SqIz1Jpb#Ay5ioC4EkiQgZVuVYDUL6hfO2LiBvsJxjTXX1qAnxrg
https://drive.google.com/file/d/1ymUkS422jiNnEKU2witPb2fIL8wf6eME/view

Use the following command to install gedit if it is not installed yet (sudo password is
comp9313):

$ sudo apt install gedit

Open the file ~/.pashzc using gedit (or use vim or emacs if you are familiar with them):

$ gedit ~/.bashrc

Then add the following lines to the end of this file:

export HADOOP_ HOME=/home/comp9313/hadoop-3.3.2
export HADOOP_CONF_DIR=$HADOOP_ HOME/etc/hadoop
export PATH=$HADOOP_ﬁOME/bin:$HADOOP_ﬂOME/sbin:$PATH
export JAVA HOME=/usr/lib/jvm/java-1ll-openjdk-amdé64

Save the file, and then run the following command to take these configurations into effect:

$ source ~/.bashrc

Important: Check if the HADOOP_ HOME is correctly configured by:

$ echo $HADOOP_ HOME

You should see:

/home/comp9313/hadoop-3.3.2

2. Configure HDFS

We first open the hadoop environment file, hadoop-env.sh, using:

$ gedit $HADOOP_CONF_DIR/hadoop-env.sh

and add the following to the end of this file

export JAVA HOME=/usr/lib/jvm/java-ll-openjdk-amdé64

Then open the HDFS core configuration file, core-site.xml, using:

$ gedit $HADOOP_CONF_DIR/core-site.xml

Note that it is in xml format, and every configuration should be put in between <configuration>
and </configuration>. You need to add the following lines:

<property>
<name>hadoop. tmp.dir</name>
<value>file:/home/comp9313/hadoop-3.3.2/tmp</value>
</property>

<property>
<name>fs.defaultFS</name>
<value>hdfs://localhost:9000</value>
</property>

For more configuration details please refer to:

https://hadoop.apache.org/docs/r3.3.2/hadoop-project-dist/hadoop-common/core-default.xml

Finally open the configuration file hdfs-site.xml, using:

$ gedit $HADOOP CONF DIR/hdfs-site.xml

You need to add the following lines between <configuration> and </configuration>:

<property>
<name>dfs.replication</name>
<value>1</value>
</property>

<property>
<name>dfs.namenode.name.dir</name>
<value>file:/home/comp9313/hadoop-3.3.2/tmp/dfs/name</value>
</property>

<property>

<name>dfs.datanode.data.dir</name>

<value> file:/home/comp9313/hadoop-3.3.2/tmp/dfs/data</value>
</property>

Now you have already done the basic configuration of HDFS, and it is ready to use.
For more configuration details please refer to;

https://hadoop.apache.org/docs/r3.3.2/hadoop-project-dist/hadoop-hdfs/hdfs-default.xml

Start HDFS

0. install and configure ssh (if already installed and configured, you can skip this step)

If you cannot ssh to localhost, you need to do the following configurations:

sudo apt install ssh

ssh-keygen -t rsa -P '' -f ~/.ssh/id _rsa

cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized keys
chmod 0600 ~/.ssh/authorized keys

w »r v

1. Work in the Hadoop home folder.

$ cd $HADOOP_HOME

Format the NameNode (the master node):

$ hdfs namenode -format

You should see the output like below if successful:

1 14:21:49,601 INFO namenode.NNStorageRetentionManager: Going to retain 1 images with txid >= 0
1 14:21:49,757 INFO namenode.FSNamesystem: Stopping services started for active state
1 14:21:49,758 INFO namenode.FSNamesystem: Stopping services started for standby state
1 14:21:49,767 INFO namenode.FS
INFO

SHUTDOWN_MSG: Shutting down NameNode at comp9313-VirtualBox,/127.0.1.1

o o o e e e S o e e

https://hadoop.apache.org/docs/r3.3.2/hadoop-project-dist/hadoop-common/core-default.xml
https://hadoop.apache.org/docs/r3.3.2/hadoop-project-dist/hadoop-hdfs/hdfs-default.xml

Start HDFS in the virtual machine using the following command:

$ start-dfs.sh

If you see below,

The authenticity of host 'localhost (127.0.0.1)' can't be established.
ECDSA key fingerprint is SHA256:Dh8UxAxD1CQJI3ICIQOI9/Ma0c1IvbdBWDMEYMKYF3PA.

Are you sure you want to continue connecting (yes/no/[fingerprint])? I

you just need to input “yes” to continue.

2. Use the command “jps” to see whether Hadoop has been started successfully. You should
see something like below:

9970 SecondaryNameNode
9610 NameNode

10219 Ips
9748 DataNode

Note that you should have “NameNode”, “DataNode” and “SecondaryNameNode”.

3. You can browse the web interface for the information of NameNode and DataNode at:
http://localhost:9870. You will see:

Hadoop Overview Datanodes Datanode Volume Failures Snapshot Startup Progress Utilities ~

Overview ‘localhost:9000' (vactive)

Started: Wed Sep 01 14:33:37 +1000 2021

Version: 3.3.1, ra3b9c37a397ad4188041dd80621bdeefc46885f2

Compiled: Tue Jun 15 15:13:00 +1000 2021 by ubuntu from (HEAD detached at release-3.3.1-RC3)
Cluster ID: CID-cd5585a8-a6f6-46b9-85e4-b85f93c95185

Block Pool ID: BP-2031787479-127.0.1.1-1630470108712

Summary

Security is off.

Safemode is off.

1 files and directories, 0 blocks (0 replicated blocks, 0 erasure coded block groups) = 1 total filesystem object(s).

Heap Memory used 50.59 MB of 82.88 MB Heap Memory. Max Heap Memory is 951.25 MB.

Non Heap Memory used 49.66 MB of 52.31 MB Commited Non Heap Memory. Max Non Heap Memory is <unbounded=>.

Using HDFS

1. Make the HDFS directories required to execute MapReduce jobs:

$ hdfs dfs -mkdir -p /user/comp9313

Folders are created upon HDFS, rather than local file systems. After creating these folders, the
/user/comp9313 IS NOwW the default working folder in HDFS. That is, you can
create/get/copy/list (and more operations) files/folders without typing /user/comp9313 every
time. For example, we can use

http://localhost:9870/

$ hdfs dfs -1ls

instead of

$ hdfs dfs -1s /user/comp9313
to list files in /user/comp9313.

2. Make a directory input to store files:

$ hdfs dfs -mkdir input

Remember /user/comp9313 is our working folder. Thus, the directory input is created under
/user/comp9313, that is: /user/comp9313/input. Check the input folder exists using

$ hdfs dfs -1ls

3. Copy the input files into the distributed filesystem:

$ hdfs dfs -put $HADOOP_ HOME/etc/hadoop/*.xml input

We will copy all xml files in the directory of suapoop HOME/etc/hadoop ON the local file
system to the directory of /user/comp9313/input ON HDFS. After you copy all the files, you
can use the following command to list the files in input:

S hdfs dfs -1ls input
4. Please find more commands of HDFS operations here:

https://hadoop.apache.org/docs/r3.3.2/hadoop-project-dist/hadoop-
common/FileSystemShell.html

and try these commands to operate the HDFS files and/or folders. At least you should familiar
with the following commands in this lab:

get, put, cp, mv, rm, mkdir, cat

Running MapReduce in the pseudo-distributed mode

Now Hadoop has been configured to the pseudo-distributed mode, where each Hadoop
daemon runs in a separate Java process. This is useful for debugging.

1. The hadoop-mapreduce-examples-3.3.2.jar is a package of classic MapReduce
implementations including wordcount, grep, pi, €tC. You can explore by checking the
available applications as:

$ hadoop jar $HADOOP_ HOME/share/hadoop/mapreduce/hadoop-mapreduce-examples-3.3.2.jar

2. Choose one that you are interested in and investigate the specific usage. For example, to
run the pi example with 16 maps and 100000 samples:

$ hadoop jar $HADOOP_ HOME/share/hadoop/mapreduce/hadoop-mapreduce-examples-3.3.2.jar
pi 16 10000

https://hadoop.apache.org/docs/r3.3.2/hadoop-project-dist/hadoop-common/FileSystemShell.html
https://hadoop.apache.org/docs/r3.3.2/hadoop-project-dist/hadoop-common/FileSystemShell.html

You will see the results:

Shuffle Errors
BAD_ID=0
CONMECTION=0
I0_ERROR=0
WROMG_LENGTH=0
WROMNG_MAP=0
WROMG_REDUCE=0

File Input Format Counters
Bytes Read=1888
File Output Format Counters
Bytes Written=97
Job Finished in 15.499 seconds
Estimated value of P1 is 3.14127500000000000000

If you want to search for all the strings starting with ‘dfs’ in the xml files stored in HDFS, you
can try the following command:

$ hadoop jar $HADOOP_ HOME/share/hadoop/mapreduce/hadoop-mapreduce-examples-3.3.2.jar
grep input output 'dfs[a-z.]+'

Please see here http://www.cyberciti.biz/fag/howto-use-grep-command-in-linux-unix/ if you
are not familiar with the grep command. The results are stored in the directory “output” in
HDFS. Copy the output files from the distributed filesystem to the local filesystem and
examine the results:

$ hdfs dfs -get output output
$ cat output/*

Or, you can examine them on HDFS directly:
$ hdfs dfs -cat output/*
You can see the results like below:

:~$ hdfs dfs -cat output/*

dfsadmin
dfs.replication

dfs.namenode.name.dir
dfs.datanode.data.dir

3. Check the usage of wordcount by running:

$ hadoop jar $HADOOP HOME/share/hadoop/mapreduce/hadoop-mapreduce-examples-3.3.2.jar
wordcount

You will notice that the application would need an input file and an output file as arguments,
which are the inputs and outputs respectively. Thus, you can use the following command to
count the frequency of words from files in our input folder and write the results to our output
folder:

$ hadoop jar $HADOOP HOME/share/hadoop/mapreduce/hadoop-mapreduce-examples-3.3.2.jar
wordcount input output

Warning: Note that if output already exists, you will meet an exception.
You need to either delete output on HDFS:

http://www.cyberciti.biz/faq/howto-use-grep-command-in-linux-unix/

$ hdfs dfs -rm -r output

Or, you use another folder to store the results (e.g., output2). Then the
results can be checked using cat as you did before.

Execute a job on YARN

1. Configurations

If we want to run the job in a real distributed environment, we need to borrow a hand from
YARN, which manages all the computing nodes and resources of Hadoop. On a single
computer, we can also run a MapReduce job on YARN in a pseudo-distributed mode by
setting a few parameters and running ResourceManager daemon and NodeManager daemon
in addition.

We first configure the MapReduce to use the YARN framework. Open the mapred-site.xml :

$ gedit $HADOOP_CONF_DIR/mapred-site.xml

and then add the following lines (still in between <configuration> and </configuration>):

<property>
<name>mapreduce . framework . name</name>
<value>yarn</value>

</property>

<property>
<name>yarn.app .mapreduce.am.env</name>
<value>HADOOP_MAPRED_ HOME=$HADOOP_MAPRED HOME</value>
</property>

<property>

<name>mapreduce .map.env</name>

<value>HADOOP_MAPRED_ HOME=$HADOOP_MAPRED HOME</value>
</property>

<property>
<name>mapreduce. reduce.env</name>
<value>HADOOP_MAPRED_ HOME=$HADOOP_ MAPRED HOME</value>
</property>

Then open the yarn-site.xml to configure yarn:

$ gedit $HADOOP_CONF_DIR/yarn-site.xml

and add the following lines:

<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
<!-- Option configuration, useful when no enough disk space -->
<property>
<name>yarn.nodemanager .disk-health-checker.min-healthy-
disks</name>
<value>0</value>
</property>
<property>

<name>yarn.nodemanager.disk-health-checker.max-disk-
utilization-per-disk-percentage</name>

<value>100</value>
</property>

2. Start YARN:

$ start-yarn.sh

3. Try jps again, you will see “NodeManager” and “ResourceManager”, and these are the
main daemons of YARN.

ResourceManager
ModeManager

SecondaryNameNode
NameNode

Jps

DataNode

4. Run the grep or wordcount example again.

You may observe that now the runtime is longer. Compared to the non-distributed execution,
YARN is now managing resources and scheduling tasks. This causes some overheads.
However, YARN allows us to deploy and run our applications in a cluster with up to
thousands of machines, and process very large data in the real world.

If you do not want to use YARN, you can first stop YARN by running “stop-yarn.sh”, and
then rename the mapred-site.xml file by:

$ mv $HADOOP_CONF_DIR/mapred-site.xml $HADOOP_CONF_DIR/mapred-site.xml.bak

5. Browse the web interface (for supervision and debugging) for the ResourceManager at:
http://localhost:8088/.

CrlEElaED

« Cluster Cluster Metrics
About Apps Submitted Apps Pending Apps Running Apps Completed
Nodes 1 0 o] 1
Binde Labels Cluster Nodes Metrics
Applications
NEW Active Nodes Decommissioning NModes
NEW SAVING 1 o
SUBMITTED :
ACCEPTED Scheduler Metrics
Ew;:‘lgg Scheduler Type Scheduling Resource Type
FAILED Capacity Scheduler [memory-mb (unit=Mi), vcores]

KILLED

Show 20 - entries
Scheduler

Application Application

T Tags Queue

» Tools ID User Name

application_1630583109474 0001 comp9313 QuasiMenteCarlo MAPREDUCE default

Showing 1 to 1 of 1 entries

http://localhost:8088/

