
COMP9313: Big Data Management

Lecturer: Xin Cao
Course web site: http://www.cse.unsw.edu.au/~cs9313/

4.2

Chapter 4.2: Spark II

4.3

Part 1: Programming with RDD

4.4

SparkContext

❖ SparkContext is the entry point to Spark for a Spark application.

❖ Once a SparkContext instance is created you can use it to

➢ Create RDDs

➢ Create accumulators

➢ Create broadcast variables

➢ access Spark services and run jobs

❖ A Spark context is essentially a client of Spark’s execution

environment and acts as the master of your Spark application

❖ The first thing a Spark program must do is to create a SparkContext

object, which tells Spark how to access a cluster

❖ In the Spark shell, a special interpreter-aware SparkContext is already

created for you, in the variable called sc

4.5

Spark Key-Value RDDs

❖ Similar to Map Reduce, Spark supports Key-Value pairs

❖ Each element of a Pair RDD is a pair tuple

❖ Spark supports data partitioning control for pair RDDs

❖ Some Key-Value transformation functions:

4.6

Pair RDD Example (Transformation)

❖ Transformations on one pair RDD rdd = {(1, 2), (3, 4), (3, 6)}

Name Purpose Example Result

reduceByKey(func) Combine values

with the same key

rdd.reduceByKey(

lambda x, y: x+y)

{(1, 2), (3, 10)}

groupByKey() Group values with

the same key

rdd.groupByKey() {(1, [2]), (3, [4, 6])}

mapValues(func) Apply a function to

each value of a pair

RDD without

changing the key

rdd.mapValues(la

mbda x: x+1)

{(1, 3), (3, 5), (3, 7)}

keys() Return an RDD of

just the keys

rdd.keys() {1, 3, 3}

values() Return an RDD of

just the values

rdd.values() {2, 4, 6}

sortByKey() Return an RDD

sorted by the key

rdd.sortByKey() {(1, 2), (3, 4), (3, 6)}

4.7

Pair RDD Example (Transformation)

❖ Transformations on two pair RDDs rdd1 = {(1, 2), (3, 4), (3, 6)} and

rdd2 = {(3, 9)})

Name Purpose Example Result

subtractByKey Remove elements

with a key present in

the other RDD

rdd1.subtractByKey

(rdd2)

{(1, 2)}

join Perform an inner

join between two

RDDs

rdd1.join(rdd2) {(3, (4, 9)), (3, (6, 9))}

cogroup Group data from

both RDDs sharing

the same key

rdd1.cogroup(rdd2) {(1,([2],[])),

(3, ([4, 6],[9]))}

4.8

Pair RDD Example (Actions)

❖ Actions on one pair RDD rdd = ({(1, 2), (3, 4), (3, 6)})

Name Purpose Example Result

countByKey() Count the number

of elements for

each key

rdd.countByKey() {(1, 1), (3, 2)}

collectAsMap() Collect the result as

a map to provide

easy lookup

rdd.collectAsMap() Map{(1, 2), (3,

4), (3, 6)}

lookup(key) Return all values

associated with the

provided key

rdd.lookup(3) [4, 6]

4.9

Setting the Level of Parallelism

❖ All the pair RDD operations take an optional second parameter for

number of tasks

> words.reduceByKey((x,y) => x + y, 5)

> words.groupByKey(5)

4.10

A Few Practices on Pair RDD

lines = sc.parallelize(["hello world", "this is a scala program", "to create a pair RDD", "in spark"])

pairs = lines.map(lambda x: (x.split(" ")[0], x))

pairs.filter(lambda x: len(x[0])<3).collect()

pairs = sc.parallelize([(1, 2), (3, 1), (3, 6), (4,2)])

pairs1 = pairs.mapValues(lambda x: (x, 1))

pairs2 = pairs1.reduceByKey(lambda x, y: (x[0] + y[0], x[1]+y[1]))

pairs2.foreach(lambda x: print(x))

val pairs = sc.parallelize(List((1, 2), (3, 4), (3, 9), (4,2)))

val pairs1 = pairs.mapValues(x=>(x, 1)).reduceByKey((x,y) => (x._1 + y._1,

x._2+y._2)).mapValues(x=>x._2/x._1)

pairs1.foreach(println)

4.11

Passing Functions to RDD

❖ Spark’s API relies heavily on passing functions in the driver program

to run on the cluster.

➢ Anonymous function. E.g.,

 (Scala) val words = input.flatMap(line => line.split(" "))

 (Python) words = input.flatMap(lambda line: line.split(" "))

➢ Static methods in a global singleton object. E.g,

 (Scala) object MyFunctions {def func1(s: String): String = { ... }}

myRdd.map(MyFunctions.func1)

4.12

Understanding Closures

❖ RDD operations that modify variables outside of their scope can be a

frequent source of confusion.

❖ The result could be different when running Spark in local mode (--

master = local[n]) versus deploying a Spark application to a cluster

(e.g. via spark-submit to YARN):

➢ The behavior of the above code is undefined, and may not work

as intended.

➢ Spark sends the closure to each task containing variables must be

visible to the executors. Thus “counter” in the executor is only a

copy of the “counter” in the driver.

counter = 0

rdd = sc.parallelize(data)

rdd.foreach(lambda x: counter += x)

print("Counter value: " + counter)

4.13

Using Local Variables

❖ Any external variables you use in a closure will automatically be

shipped to the cluster:

> query = sys.stdin.readline()

> pages.filter(x => x.contains(query)).count()

❖ Some caveats:

➢ Each task gets a new copy (updates aren’t sent back)

➢ Variable must be Serializable

4.14

Shared Variables

❖ When you perform transformations and actions that use functions

(e.g., map(f: T=>U)), Spark will automatically push a closure

containing that function to the workers so that it can run at the

workers.

❖ Any variable or data within a closure or data structure will be

distributed to the worker nodes along with the closure

❖ When a function (such as map or reduce) is executed on a cluster

node, it works on separate copies of all the variables used in it.

❖ Usually these variables are just constants but they cannot be shared

across workers efficiently.

4.15

Shared Variables

❖ Consider These Use Cases

➢ Iterative or single jobs with large global variables

 Sending large read-only lookup table to workers

 Sending large feature vector in a ML algorithm to workers

 Problems? Inefficient to send large data to each worker with

each iteration

 Solution: Broadcast variables

➢ Counting events that occur during job execution

 How many input lines were blank?

 How many input records were corrupt?

 Problems? Closures are one way: driver -> worker

 Solution: Accumulators

4.16

Broadcast Variables

❖ Broadcast variables allow the programmer to keep a read-only

variable cached on each machine rather than shipping a copy of it with

tasks.

➢ For example, to give every node a copy of a large input dataset

efficiently

❖ Spark also attempts to distribute broadcast variables using efficient

broadcast algorithms to reduce communication cost

❖ Broadcast variables are created from a variable v by calling

SparkContext.broadcast(v). Its value can be accessed by calling

the value method.

❖ The broadcast variable should be used instead of the value v in any

functions run on the cluster, so that v is not shipped to the nodes more

than once.

>>> broadcastVar = sc.broadcast([1, 2, 3])

<pyspark.broadcast.Broadcast object at 0x102789f10>

>>> broadcastVar.value

[1, 2, 3]

4.17

Accumulators

❖ Accumulators are variables that are only “added” to through an

associative and commutative operation and can therefore be

efficiently supported in parallel.

❖ They can be used to implement counters (as in MapReduce) or sums.

❖ Spark natively supports accumulators of numeric types, and

programmers can add support for new types.

❖ Only driver can read an accumulator’s value, not tasks

❖ An accumulator is created from an initial value v by calling

SparkContext.accumulator(v).

>>> accum = sc.accumulator(0)

>>> accum

Accumulator<id=0, value=0>

>>> sc.parallelize([1, 2, 3, 4]).foreach(lambda x: accum.add(x))...

10/09/29 18:41:08 INFO SparkContext: Tasks finished in 0.317106 s

>>> accum.value

10

4.18

Accumulators Example (Python)

❖ Counting empty lines

➢ blankLines is created in the driver, and shared among workers

➢ Each worker can access this variable

file = sc.textFile(inputFile)

Create Accumulator[Int] initialized to 0

blankLines = sc.accumulator(0)

def extractCallSigns(line):

global blankLines # Make the global variable accessible

if (line == ""):

blankLines += 1

return line.split(" ")

callSigns = file.flatMap(extractCallSigns)

print ("Blank lines: %d" % blankLines.value)

4.19

RDD Operations

Spark RDD API Examples （Scala):

http://homepage.cs.latrobe.edu.au/zhe/ZhenHeSparkRDDAPIExamples.html

Spark RDD API Reference （Python):

https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.RDD.html?hig

hlight=pyspark%20rdd

http://homepage.cs.latrobe.edu.au/zhe/ZhenHeSparkRDDAPIExamples.html
https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.RDD.html?highlight=pyspark%20rdd
https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.RDD.html?highlight=pyspark%20rdd

4.20

Spark

4.21

Part 2: Spark Programming Model (RDD)

4.22

How Spark Works

❖ User application create RDDs, transform them, and run actions.

❖ This results in a DAG (Directed Acyclic Graph) of operators.

❖ DAG is compiled into stages

❖ Each stage is executed as a series of Task (one Task for each

Partition).

4.23

Word Count in Spark

textfile = sc.textFile(“hdfs://…”, 4) RDD[String]

textFile

4.24

Word Count in Spark

textfile = sc.textFile(“hdfs://…”, 4)

words = text.flatMap(lambda line: line.split())

RDD[String]

RDD[List[String]]

textFile flatMap

4.25

Word Count in Spark

textfile = sc.textFile(“hdfs://…”, 4)

words = text.flatMap(lambda line: line.split())

pairs = words.map(lambda word: (word, 1))

RDD[String]

RDD[String]

RDD[(String, Int)]

maptextFile flatMap

4.26

Word Count in Spark

textfile = sc.textFile(“hdfs://…”, 4)

words = text.flatMap(lambda line: line.split())

pairs = words.map(lambda word: (word, 1))

count = pairs.reduceByKey(lambda a, b:

a+b)

maptextFile flatMap

RDD[(String, Int)]

reduceByKey

RDD[String]

RDD[String]

RDD[(String, Int)]

4.27

Word Count in Spark

textfile = sc.textFile(“hdfs://…”, 4)

words = text.flatMap(lambda line: line.split())

pairs = words.map(lambda word: (word, 1))

count = pairs.reduceByKey(lambda a, b:

a+b)

count.collect()

maptextFile flatMap reduceByKey

Array[(String, Int)]

collect

RDD[(String, Int)]

RDD[String]

RDD[String]

RDD[(String, Int)]

4.28

map vs. flatMap

❖ Sample input file:

❖ map: Return a new distributed dataset formed by passing each

element of the source through a function func.

❖ flatMap: Similar to map, but each input item can be mapped to 0 or

more output items (so func should return a Seq rather than a single

item).

4.29

Execution Plan

maptextFile flatMap reduceByKey

collect

Stage 1 Stage 2

❖ The scheduler examines the RDD’s lineage graph to build a DAG of

stages.

❖ Stages are sequences of RDDs, that don’t have a Shuffle in between

❖ The boundaries are the shuffle stages.

4.30

Execution Plan

maptextFile flatMap reduceByKey

collect

Stage 1 Stage 2

Stage 1 Stage 2

1. Read HDFS split

2. Apply both the maps

3. Start Partial reduce

4. Write shuffle data

1. Read shuffle data

2. Final reduce

3. Send result to

driver program

4.31

Stage Execution

❖ Create a task for each Partition in the new RDD

❖ Serialize the Task

❖ Schedule and ship Tasks to Slaves

❖ All this happens internally

Task 1

Task 2

Task 3

Task 4

4.32

Understanding Spark Application Concepts

❖ Application

➢ A user program built on Spark using its APIs. It consists of a driver

program and executors on the cluster

❖ SparkContext/SparkSession

➢ An object that provides a point of entry to interact with underlying

Spark functionality and allows programming Spark with its APIs

❖ Job

➢ A parallel computation consisting of multiple tasks that gets

spawned in response to a Spark action (e.g., save(), collect()).

❖ Stage

➢ Each job gets divided into smaller sets of tasks called stages that

depend on each other.

❖ Task

➢ A single unit of work or execution that will be sent to a Spark

executor.

4.33

Spark Application and SparkSession

❖ The core of every Spark application is the Spark driver program, which

creates a SparkSession (SparkContext in Spark 1.x) object.

➢ When you’re working with a Spark shell, the driver is part of the

shell and the SparkSession/SparkContext object (accessible via

the variable spark) is created for you

➢ Once you have a SparkSession/ SparkContext, you can program

Spark using the APIs to perform Spark operations.

4.34

Spark Jobs

❖ During interactive sessions with Spark shells, the driver converts your

Spark application into one or more Spark jobs

❖ It then transforms each job into a Spark’s execution plan as a DAG,

where each node within a DAG could be a single or multiple Spark

stages.

4.35

Spark Stages and Tasks

❖ Stages are created based on what operations can be performed

serially or in parallel.

❖ Each stage is comprised of Spark tasks (a unit of execution), which

are then federated across each Spark executor; each task maps to a

single core and works on a single partition of data

4.36

Spark Architecture

❖ A Spark application consists of a driver program that is responsible for

orchestrating parallel operations on the Spark cluster. The driver

accesses the distributed components in the cluster—the Spark

executors and cluster manager—through a SparkSession or

SparkContext object.

4.37

Spark Components

❖ Spark Driver: part of the Spark application responsible for

instantiating a SparkSession

➢ Communicates with the cluster manager

➢ Requests resources (CPU, memory, etc.) from the cluster

manager for Spark’s executors (JVMs)

➢ Transforms all the Spark operations into DAG computations,

schedules them, and distributes their execution as tasks across

the Spark executors

➢ Once the resources are allocated, it communicates directly with

the executors.

4.38

Spark Components

❖ Since Spark 2.x, the SparkSession became a unified conduit to all

Spark operations and data (it subsumes previous entry points to Spark

like the SparkContext)

❖ SparkSession provides a single unified entry point to all of Spark’s

functionality

➢ Create JVM runtime parameters

➢ Define DataFrames and Datasets

➢ Read from Data Sources

➢ Access catalog metadata

➢ Issue Spark SQL queries

4.39

Spark Components

❖ Cluster manager

➢ Responsible for managing and allocating resources for the cluster

of nodes on which your Spark application runs.

➢ Support four cluster managers: the built-in standalone cluster

manager, Apache Hadoop YARN, Apache Mesos, and

Kubernetes.

❖ Spark executor

➢ Runs on each worker node in the cluster.

➢ Communicate with the driver program and is responsible for

executing tasks on the workers.

➢ In most deployments modes, only a single executor runs per node.

4.40

Distributed Data and Partitions

❖ Actual physical data is distributed across storage as partitions residing

in either HDFS or other cloud storage.

❖ The data is distributed as partitions across the physical cluster

❖ Spark treats each partition as a high-level logical data abstraction in

memory.

❖ Each Spark executor is preferably allocated a task that requires it to

read the partition closest to it in the network, observing data locality.

4.41

Distributed Data and Partitions

❖ Each executor’s core is assigned its own data partition to work on

4.42

Word Count in Spark (As a Whole View)

❖ Word Count using Scala in Spark

Transformation

Action

“to be or”

“not to be”

“to”
“be”
“or”

“not”
“to”
“be”

(to, 1)
(be, 1)
(or, 1)

(not, 1)
(to, 1)
(be, 1)

(be, 2)
(not, 1)

(or, 1)
(to, 2)

4.43

The Spark UI

❖ Spark includes a graphical user interface that you can use to inspect

or monitor Spark applications in their various stages of

decomposition—that is jobs, stages, and tasks.

❖ The driver launches a web UI, running by default on port 4040, where

you can view metrics and details such as:

➢ A list of scheduler stages and tasks

➢ A summary of RDD sizes and memory usage

➢ Information about the environment

➢ Information about the running executors

➢ All the Spark SQL queries

❖ In local mode, you can access this interface at http://localhost:4040 in

a web browser.

4.44

Spark Web Console

❖ You can browse the web

interface for the information

of Spark Jobs, storage, etc.

at: http://localhost:4040

4.45

Part 3: Running on a Cluster

4.46

WordCount (RDD, Scala)

❖ Standalone code

❖ You need to create a SparkContext object first

import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import org.apache.spark.SparkConf

object WordCount {
def main(args: Array[String]) {
val inputFile = args(0)
val outputFolder = args(1)
val conf = new SparkConf().setAppName(“wordCount”).setMaster(“local”)
// Create a Scala Spark Context.
val sc = new SparkContext(conf)
// Load our input data.
val input = sc.textFile(inputFile)
// Split up into words.
val words = input.flatMap(line => line.split(" "))
// Transform into word and count.
val counts = words.map(word => (word, 1)).reduceByKey(_+_)
counts.saveAsTextFile(outputFolder)

}
}

4.47

WordCount (RDD, Scala)

❖ Linking with Apache Spark

➢ The first step is to explicitly import the required spark classes into

your Spark program

❖ Initializing Spark

➢ Create a Spark context object with the desired spark configuration

that tells Apache Spark on how to access a cluster

➢ SparkConf: Spark configuration class

➢ setAppName: set the name for your application

➢ setMaster: set the cluster master URL

import org.apache.spark.SparkContext

import org.apache.spark.SparkContext._

import org.apache.spark.SparkConf

val conf = new SparkConf().setAppName(“wordCount”).setMaster(“local”)

val sc = new SparkContext(conf)

4.48

setMaster

❖ Set the cluster master URL to connect to

❖ Parameters for setMaster:

➢ local(default) - run locally with only one worker thread (no parallel)

➢ local[k] - run locally with k worker threads

➢ spark://HOST:PORT - connect to Spark standalone cluster URL

➢ mesos://HOST:PORT - connect to Mesos cluster URL

➢ yarn - connect to Yarn cluster URL

 Specified in SPARK_HOME/conf/yarn-site.xml

❖ setMaster parameters configurations:

➢ In source code

 SparkConf().setAppName(“wordCount”).setMaster(“local”)

➢ spark-submit

 spark-submit --master local

➢ In SPARK_HOME/conf/spark-default.conf

 Set value for spark.master

4.49

WordCount (RDD, Scala)

❖ Creating a Spark RDD

➢ Create an input Spark RDD that reads the text file input.txt using

the Spark Context created in the previous step

❖ Spark RDD Transformations in Wordcount Example

➢ flatMap() is used to tokenize the lines from input text file into

words

➢ map() method counts the frequency of each word

➢ reduceByKey() method counts the repetitions of word in the text

file

❖ Save the results to disk

val input = sc.textFile(inputFile)

counts.saveAsTextFile(outputFolder)

4.50

Package Your Code and Dependencies

❖ Ensure that all your dependencies are present at the runtime of your

Spark application

❖ Java Application (Maven)

❖ Scala Application (sbt)

➢ a newer build tool most often used for Scala projects

➢ libraryDependencies: list all dependent libraries (including third

party libraries)

➢ A jar file simple-project_2.12-1.0.jar will be created after

compilation

name := "Simple Project"

version := "1.0"

scalaVersion := "2.12.10"

libraryDependencies += "org.apache.spark" %% "spark-

core" % “3.3.0"

4.51

Launching a Program

❖ Spark provides a single script you can use to submit your program to it

called spark-submit

➢ The user submits an application using spark-submit

➢ spark-submit launches the driver program and invokes the main()

method specified by the user

➢ The driver program contacts the cluster manager to ask for

resources to launch executors

➢ The cluster manager launches executors on behalf of the driver

program

➢ The driver process runs through the user application. Based on

the RDD actions and transformations in the program, the driver

sends work to executors in the form of tasks

➢ Tasks are run on executor processes to compute and save results

➢ If the driver’s main() method exits or it calls SparkContext.stop(), it

will terminate the executors and release resources from the cluster

manager

4.52

Deploying Applications in Spark

❖ spark-submit

➢ spark-submit --master spark://hostname:7077 \

 --class YOURCLASS \

 --executor-memory 2g \

 YOURJAR "options" "to your application" "go here"

Common flags Explanation

--master Indicates the cluster manager to connect to

--class The “main” class of your application if you’re running a

Java or Scala program

--name A human-readable name for your application. This will be

displayed in Spark’s web UI.

--executor-memory The amount of memory to use for executors, in bytes.

Suffixes can be used to specify larger quantities such as

“512m” (512 megabytes) or “15g” (15 gigabytes)

--driver-memory The amount of memory to use for the driver process, in

bytes.

4.53

WordCount (RDD, Python)

❖ Standalone code

➢ Refer to the document of SparkConf and SparkContext

❖ Use spark-submit to run the code in a cluster:

➢ spark-submit wordcount.py

from pyspark import SparkContext, SparkConf

conf = SparkConf()
conf.setMaster("local").setAppName("wordcount")
sc = SparkContext(conf=conf)

#Or you can do the below directly
#sc = SparkContext('local’, wordcount’)

text = sc.textFile("text.txt")
count = text.flatMap(lambda line: line.split()).map(lambda word: (word,
1)).reduceByKey(lambda a, b : a + b)
count.saveAsTextFile("results")
sc.stop()

https://spark.apache.org/docs/3.3.0/api/python/reference/api/pyspark.SparkConf.html#pyspark.SparkConf
https://spark.apache.org/docs/3.3.0/api/python/reference/api/pyspark.SparkContext.html

4.54

In-Memory Can Make a Big Difference

❖ Two iterative Machine Learning algorithms:

4.55

Spark Core Programming Practice

4.56

Practice

❖ Problem 1: Given a pair RDD of type [(String, Int)], compute the per-

key average

key value

panda 0

pink 3

pirate 3

panda 1

pink 4

key value

panda 0.5

pink 3.5

pirate 3

key value

panda (0, 1)

pink (3, 1)

pirate (3, 1)

panda (1, 1)

pink (4, 1)

key value

panda (1, 2)

pink (7, 2)

pirate (3, 1)

mapValues

reduceByKey

mapValues

pair.mapValues(x=>(x,1))

 .reduceByKey((x,y)=>(x._1+y._1, x._2+y._2))

 .mapValues(x=>x._1.toDouble/x._2)

4.57

Practice

❖ Problem 2: Given the data in format of key-value pairs <Int, Int>, find

the maximum value for each key across all values associated with that

key.

val pairs = sc. Parallelize(List((1, 2), (3, 4),… …))

// ???

resMax.foreach(x => println(x._1, x._2))

val resMax = pairs.groupByKey().mapValues(x=>x.max)val resMax = pairs.reduceByKey((a, b) => if(a > b) a else b)

4.58

Practice

❖ Problem 3: Given a collection of documents, compute the average

length of words starting with each letter.

val textFile = sc.textFile(inputFile)

val words = textFile.flatMap(_.split(" ")).map(_.toLowerCase)

val counts = words.filter(x=> x.length >=1 && x.charAt(0)<='z' &&

x.charAt(0)>='a').map(x=>(x.charAt(0), (x.length, 1)))

val avgLen = counts.reduceByKey((a, b)=>(a._1+b._1, a._2+b._2)).map(x=>(x._1,

x._2._1.toDouble/x._2._2))

avgLen.foreach(x => println(x._1, x._2))

textFile = sc.textFile(inputFile)

words = textFile.flatMap(lambda line: line.split(" ")).map(lambda x: x.lower())

counts = words.filter(lambda x: len(x) >=1 and x[0]<='z' and x[0]>='a').map(lambda x:

(x[0], (len(x), 1)))

avgLen = counts.reduceByKey(lambda a, b: (a[0]+b[0], a[1]+b[1])).map(lambda x:

(x[0], x[1][0]/x[1][1]))

avgLen.foreach(lambda x: print(x[0], x[1]))

4.59

References

❖ http://spark.apache.org/docs/latest/index.html

❖ Learning Spark. 1st edition

http://spark.apache.org/docs/latest/index.html
https://www.safaribooksonline.com/library/view/learning-spark/9781449359034/

End of Chapter 4.2

	Slide 1: COMP9313: Big Data Management Lecturer: Xin Cao Course web site: http://www.cse.unsw.edu.au/~cs9313/
	Slide 2
	Slide 3
	Slide 4: SparkContext
	Slide 5: Spark Key-Value RDDs
	Slide 6: Pair RDD Example (Transformation)
	Slide 7: Pair RDD Example (Transformation)
	Slide 8: Pair RDD Example (Actions)
	Slide 9: Setting the Level of Parallelism
	Slide 10: A Few Practices on Pair RDD
	Slide 11: Passing Functions to RDD
	Slide 12: Understanding Closures
	Slide 13: Using Local Variables
	Slide 14: Shared Variables
	Slide 15: Shared Variables
	Slide 16: Broadcast Variables
	Slide 17: Accumulators
	Slide 18: Accumulators Example (Python)
	Slide 19: RDD Operations
	Slide 20: Spark
	Slide 21
	Slide 22: How Spark Works
	Slide 23: Word Count in Spark
	Slide 24: Word Count in Spark
	Slide 25: Word Count in Spark
	Slide 26: Word Count in Spark
	Slide 27: Word Count in Spark
	Slide 28: map vs. flatMap
	Slide 29: Execution Plan
	Slide 30: Execution Plan
	Slide 31: Stage Execution
	Slide 32: Understanding Spark Application Concepts
	Slide 33: Spark Application and SparkSession
	Slide 34: Spark Jobs
	Slide 35: Spark Stages and Tasks
	Slide 36: Spark Architecture
	Slide 37: Spark Components
	Slide 38: Spark Components
	Slide 39: Spark Components
	Slide 40: Distributed Data and Partitions
	Slide 41: Distributed Data and Partitions
	Slide 42: Word Count in Spark (As a Whole View)
	Slide 43: The Spark UI
	Slide 44: Spark Web Console
	Slide 45
	Slide 46: WordCount (RDD, Scala)
	Slide 47: WordCount (RDD, Scala)
	Slide 48: setMaster
	Slide 49: WordCount (RDD, Scala)
	Slide 50: Package Your Code and Dependencies
	Slide 51: Launching a Program
	Slide 52: Deploying Applications in Spark
	Slide 53: WordCount (RDD, Python)
	Slide 54: In-Memory Can Make a Big Difference
	Slide 55
	Slide 56: Practice
	Slide 57: Practice
	Slide 58: Practice
	Slide 59: References
	Slide 60: End of Chapter 4.2

