
COMP9313: Big Data Management

Lecturer: Xin Cao
Course web site: http://www.cse.unsw.edu.au/~cs9313/

9.2

Chapter 9.1: NoSQL and HBase

9.3

Part 1: Introduction to NoSQL

9.4

What does RDBMS provide?

❖ Relational model with schemas

❖ Powerful, flexible query language (SQL)

❖ Transactional semantics: ACID

❖ Rich ecosystem, lots of tool support (MySQL, PostgreSQL, etc.)

9.5

What is NoSQL?

❖ The name stands for Not Only SQL

❖ Does not use SQL as querying language

❖ Class of non-relational data storage systems

❖ The term NOSQL was introduced by Eric Evans when an event was

organized to discuss open-source distributed databases

❖ It's not a replacement for a RDBMS but compliments it

❖ All NoSQL offerings relax one or more of the ACID properties (will talk

about the CAP theorem)

9.6

What is NoSQL?

❖ Key features (advantages):

➢ non-relational

➢ don’t require strict schema

➢ data are replicated to multiple nodes (so, identical & fault-
tolerant) and can be partitioned:

 down nodes easily replaced

 no single point of failure

➢ horizontal scalable

➢ cheap, easy to implement
(open-source)

➢ massive write performance

➢ fast key-value access

9.7

Why NoSQL？

❖ Web apps have different needs (than the apps that RDBMS were

designed for)

➢ Low and predictable response time (latency)

➢ Scalability & elasticity (at low cost!)

➢ High availability

➢ Flexible schemas / semi-structured data

➢ Geographic distribution (multiple datacenters)

❖ Web apps can (usually) do without

➢ Transactions / strong consistency / integrity

➢ Complex queries

9.8

Who are Using NoSQL?

❖ Google (BigTable)

❖ LinkedIn (Voldemort)

❖ Facebook (Cassandra)

❖ Twitter (HBase, Cassandra)

❖ Baidu (HyperTable)

9.9

Three Major Papers for NoSQL

❖ Three major papers were the seeds of the NoSQL movement

➢ BigTable (Google)

➢ Dynamo (Amazon)

 Ring partition and replication

 Gossip protocol (discovery and error detection)

 Distributed key-value data store

 Eventual consistency

➢ CAP Theorem (discuss in the next few slides)

9.10

CAP Theorem

❖ Suppose three properties of a distributed system (sharing data)

➢ Consistency:

 all copies have same value

➢ Availability:

 reads and writes always succeed

➢ Partition-tolerance:

 system properties (consistency and/or availability) hold even
when network failures prevent some machines from
communicating with others

C
A

P

9.11

CAP Theorem

❖ Brewer’s CAP Theorem:

➢ For any system sharing data, it is “impossible” to guarantee

simultaneously all of these three properties

➢ You can have at most two of these three properties for any

shared-data system

❖ Very large systems will “partition” at some point:

➢ That leaves either C or A to choose from (traditional DBMS
prefers C over A and P)

➢ In almost all cases, you would choose A over C (except in specific

applications such as order processing)

9.12

CAP Theorem: Consistency

All client always have

the same view of the

data

Once a writer has written,

all readers will see that

write

Consistency

Partition

tolerance

Availability

❖ Two kinds of consistency:

➢ strong consistency – ACID (Atomicity Consistency Isolation

Durability)

➢ weak consistency – BASE (Basically Available Soft-state Eventual

consistency)

9.13

ACID & CAP

❖ ACID

➢ A DBMS is expected to support “ACID transactions,” processes

that are:

➢ Atomicity: either the whole process is done or none is

➢ Consistency: only valid data are written

➢ Isolation: one operation at a time

➢ Durability: once committed, it stays that way

❖ CAP

➢ Consistency: all data on cluster has the same copies

➢ Availability: cluster always accepts reads and writes

➢ Partition tolerance: guaranteed properties are maintained even
when network failures prevent some machines from
communicating with others

9.14

Consistency Model

❖ A consistency model determines rules for visibility and apparent order

of updates

❖ Example:

➢ Row X is replicated on nodes M and N

➢ Client A writes row X to node N

➢ Some period of time t elapses

➢ Client B reads row X from node M

➢ Does client B see the write from client A?

➢ Consistency is a continuum with tradeoffs

➢ For NOSQL, the answer would be: “maybe”

➢ CAP theorem states: “strong consistency can't be achieved at the

same time as availability and partition-tolerance”

9.15

Eventual Consistency

❖ When no updates occur for a long period of time, eventually all

updates will propagate through the system and all the nodes will be

consistent

❖ For a given accepted update and a given node, eventually either the

update reaches the node or the node is removed from service

❖ Known as BASE (Basically Available, Soft state, Eventual

consistency), as opposed to ACID

❖ http://en.wikipedia.org/wiki/Eventual_consistency

http://en.wikipedia.org/wiki/Eventual_consistency

9.16

Eventual Consistency

❖ The types of large systems based on CAP aren't ACID they are BASE

(http://queue.acm.org/detail.cfm?id=1394128):

➢ Basically Available - system seems to work all the time

➢ Soft State - it doesn't have to be consistent all the time

➢ Eventually Consistent - becomes consistent at some later time

❖ Everyone who builds big applications builds them on CAP and BASE:

Google, Yahoo, Facebook, Amazon, eBay, etc.

http://queue.acm.org/detail.cfm?id=1394128

9.17

CAP Theorem: Availability

System is available

during software and

hardware upgrades and

node failures.
Consistency

Partition

tolerance

Availability

❖ Traditionally, thought of as the server/process available five 9’s

(99.999 %).

➢ However, for large node system, at almost any point in time

there’s a good chance that a node is either down or there is a

network disruption among the nodes.

➢ Want a system that is resilient in the face of network disruption

9.18

CAP Theorem: Partition-Tolerance

A system can continue to

operate in the presence

of a network partitions.

Consistency

Partition

tolerance

Availability

9.19

CAP Theorem

CAP Theorem: You can

have at most two of

these properties for any

shared-data system

Consistency

Partition

tolerance

Availability

9.20

NoSQL Taxonomy

❖ Key-Value stores

➢ Simple K/V lookups (DHT)

❖ Column stores

➢ Each key is associated with many attributes (columns)

➢ NoSQL column stores are actually hybrid row/column stores

 Different from “pure” relational column stores!

❖ Document stores

➢ Store semi-structured documents (JSON)

❖ Graph databases

➢ Neo4j, etc.

➢ Not exactly NoSQL

 can’t satisfy the requirements for High Availability and

Scalability/Elasticity very well

9.21

Key-value

❖ Focus on scaling to huge amounts of data

❖ Designed to handle massive load

❖ Based on Amazon’s dynamo paper

❖ Data model: (global) collection of Key-value pairs

❖ Dynamo ring partitioning and replication

❖ Example: (DynamoDB)

➢ items having one or more attributes (name, value)

➢ An attribute can be single-valued or multi-valued like set.

➢ items are combined into a table

9.22

Key-value

❖ Basic API access:

➢ get(key): extract the value given a key

➢ put(key, value): create or update the value given its key

➢ delete(key): remove the key and its associated value

➢ execute(key, operation, parameters): invoke an operation to the
value (given its key) which is a special data structure (e.g. List,
Set, Map etc)

9.23

Key-value

❖ Pros:

➢ very fast

➢ very scalable (horizontally distributed to nodes based on key)

➢ simple data model

➢ eventual consistency

➢ fault-tolerance

❖ Cons

Can’t model more complex data structure such as objects

9.24

Key-value

Name Producer Data model Querying

SimpleDB Amazon set of couples (key, {attribute}),

where attribute is a couple

(name, value)

restricted SQL; select, delete,

GetAttributes, and

PutAttributes operations

Redis Salvatore

Sanfilippo

set of couples (key, value),

where value is simple typed

value, list, ordered (according

to ranking) or unordered set,

hash value

primitive operations for each

value type

Dynamo Amazon like SimpleDB simple get operation and put

in a context

Voldemort LinkeIn like SimpleDB similar to Dynamo

9.25

Document-based

❖ Can model more complex objects

❖ Inspired by Lotus Notes

❖ Data model: collection of documents

❖ Document: JSON (JavaScript Object Notation is a data model, key-

value pairs, which supports objects, records, structs, lists, array,

maps, dates, Boolean with nesting), XML, other semi-structured

formats.

❖ Example: (MongoDB) document

➢ {Name:"Jaroslav",

Address:"Malostranske nám. 25, 118 00 Praha 1”,

Grandchildren: {Claire: "7", Barbara: "6", "Magda: "3", "Kirsten:

"1", "Otis: "3", Richard: "1“}

Phones: [“123-456-7890”, “234-567-8963”]

}

9.26

Document-based

Name Producer Data model Querying

MongoDB 10gen object-structured

documents stored in

collections;

each object has a primary

key called ObjectId

manipulations with objects in

collections (find object or

objects via simple selections

and logical expressions,

delete, update,)

Couchbase Couchbase document as a list of

named (structured) items

(JSON document)

by key and key range, views

via Javascript and

MapReduce

9.27

Column-based

❖ Based on Google’s BigTable paper

❖ Like column oriented relational databases (store data in column order)
but with a twist

❖ Tables similarly to RDBMS, but handle semi-structured

❖ Data model:

➢ Collection of Column Families

➢ Column family = (key, value) where value = set of related columns (standard,
super)

➢ indexed by row key, column key and timestamp

9.28

Column-based

❖ One column family can have variable numbers of columns

❖ Cells within a column family are sorted “physically”

❖ Very sparse, most cells have null values

❖ Comparison: RDBMS vs column-based NoSQL

➢ Query on multiple tables

 RDBMS: must fetch data from several places on disk and glue

together

 Column-based NoSQL: only fetch column families of those

columns that are required by a query (all columns in a column

family are stored together on the disk, so multiple rows can be

retrieved in one read operation data locality)

9.29

Column-based

Name Producer Data model Querying

BigTable Google set of couples (key, {value}) selection (by combination of

row, column, and time stamp

ranges)

HBase Apache groups of columns (a BigTable

clone)

JRUBY IRB-based shell

(similar to SQL)

Hypertable Hypertable like BigTable HQL (Hypertext Query

Language)

CASSANDRA Apache

(originally

Facebook)

columns, groups of columns

corresponding to a key

(supercolumns)

simple selections on key,

range queries, column or

columns ranges

PNUTS Yahoo (hashed or ordered) tables,

typed arrays, flexible schema

selection and projection from a

single table (retrieve an

arbitrary single record by

primary key, range queries,

complex predicates, ordering,

top-k)

9.30

Graph-based

❖ Focus on modeling the structure of data (interconnectivity)

❖ Scales to the complexity of data

❖ Inspired by mathematical Graph Theory (G=(E,V))

❖ Data model:

➢ (Property Graph) nodes and edges

 Nodes may have properties (including ID)

 Edges may have labels or roles

➢ Key-value pairs on both

❖ Interfaces and query languages vary

❖ Single-step vs path expressions vs full recursion

❖ Example:

➢ Neo4j, FlockDB, InfoGrid …

9.31

NoSQL Pros/Cons

❖ Advantages

➢ Massive scalability

➢ High availability

➢ Lower cost (than competitive solutions at that scale)

➢ (usually) predictable elasticity

➢ Schema flexibility, sparse & semi-structured data

❖ Disadvantages

➢ Don’t fully support relational features

 no join, group by, order by operations (except within partitions)

 no referential integrity constraints across partitions

➢ No declarative query language (e.g., SQL) → more programming

➢ Eventual consistency is not intuitive to program for

 Makes client applications more complicated

➢ No easy integration with other applications that support SQL

➢ Relaxed ACID (see CAP theorem later) → fewer guarantees

9.32

Conclusion

❖ NOSQL database cover only a part of data-intensive cloud

applications (mainly Web applications)

❖ Problems with cloud computing:

➢ SaaS (Software as a Service or on-demand software) applications

require enterprise-level functionality, including ACID transactions,

security, and other features associated with commercial RDBMS

technology, i.e. NOSQL should not be the only option in the cloud

➢ Hybrid solutions:

 Voldemort with MySQL as one of storage backend

 deal with NOSQL data as semi-structured data

->integrating RDBMS and NOSQL via SQL/XML

9.33

Part 2: Introduction to HBase

9.34

What is HBase?

❖ HBase is an open-source, distributed, column-oriented database

built on top of HDFS based on BigTable

➢ Distributed – uses HDFS for storage

➢ Row/column store

➢ Column-oriented - nulls are free

➢ Multi-Dimensional (Versions)

➢ Untyped - stores byte[]

❖ HBase is part of Hadoop

❖ HBase is the Hadoop application to use when you require real-time

read/write random access to very large datasets

➢ Aim to support low-latency random access

9.35

How Data is Stored in HBase ?

❖ A sparse, distributed, persistent multi-dimensional sorted map

❖ Sparse

➢ Sparse data is supported with no waste of costly storage space

➢ HBase can handle the fact that we don’t (yet) know that

information

➢ HBase as a schema-less data store; that is, it’s fluid — we can

add to, subtract from or modify the schema as you go along

❖ Distributed and persistent

➢ Persistent simply means that the data you store in HBase will

persist or remain after our program or session ends

➢ Just as HBase is an open source implementation of BigTable,

HDFS is an open source implementation of GFS.

➢ HBase leverages HDFS to persist its data to disk storage.

➢ By storing data in HDFS, HBase offers reliability, availability,

seamless scalability and high performance — all on cost effective

distributed servers.

9.36

What is HBase? (Cont’)

❖ Multi-dimensional sorted map

➢ A map (also known as an associative array) is an abstract

collection of key-value pairs, where the key is unique.

➢ The keys are stored in HBase and sorted.

➢ Each value can have multiple versions, which makes the data

model multidimensional. By default, data versions are

implemented with a timestamp.

9.37

HBase: Part of Hadoop’s Ecosystem

HBase is built on top of YARN and HDFS

HBase files are

internally

stored in HDFS

9.38

HBase vs. HDFS

❖ Both are distributed systems that scale to hundreds or thousands of

nodes

❖ HDFS is good for batch processing (scans over big files)

➢ Not good for record lookup

➢ Not good for incremental addition of small batches

➢ Not good for updates

❖ HBase is designed to efficiently address the above points

➢ Fast record lookup

➢ Support for record-level insertion

➢ Support for updates (not in place)

❖ HBase updates are done by creating new versions of values

9.39

HBase vs. HDFS

If application has neither random reads or writes ➔ Stick to HDFS

9.40

HBase Characteristics

❖ Tables have one primary index, the row key.

❖ No join operators.

❖ Scans and queries can select a subset of available columns, perhaps

by using a wildcard.

❖ There are three types of lookups:

➢ Fast lookup using row key and optional timestamp.

➢ Full table scan

➢ Range scan from region start to end.

❖ Limited atomicity and transaction support.

➢ HBase supports multiple batched mutations of single rows only.

➢ Data is unstructured and untyped.

❖ No accessed or manipulated via SQL.

➢ Programmatic access via Java, HBase shell, Thrift (Ruby, Python, Perl,

C++, ..) etc.

9.41

Too Big, or Not Too Big

❖ Two types of data: two big, or not too big

❖ If data is not too big, a relational database should be used

➢ The model is less likely to change as your business needs

change. You may want to ask different questions over time, but if

you got the logical model correct, you'll have the answers.

❖ The data is too big?

➢ The relational model doesn't acknowledge scale.

➢ You need to:

 Add indexes

 Write really complex, messy SQL

 Denormalize

 Cache

 … …

➢ How NoSQL/HBase can help?

9.42

HBase Data Model

❖ Table: Design-time namespace, has multiple sorted rows.

❖ Row:

➢ Atomic key/value container, with one row key

➢ Rows are sorted alphabetically by the row key as they are stored

 store data in such a way that related rows are near each other (e.g., a

website domain)

❖ Column:

➢ A column in HBase consists of a column family and a column qualifier,

which are delimited by a : (colon) character.

❖ Table schema only define it’s Column Families

➢ Column families physically co-locate a set of columns and their values

 Column: a key in the k/v container inside a row

 Value: a time-versioned value in the k/v container

➢ Each column consists of any number of versions

➢ Each column family has a set of storage properties, such as whether its
values should be cached in memory etc.

➢ Columns within a family are sorted and stored together

9.43

HBase Data Model (Cont’)

❖ Column:

➢ A column qualifier is added to a column family to provide the index for a

given piece of data

➢ Given a column family content, a column qualifier might be content:html,

and another might be content:pdf

➢ Column families are fixed at table creation, but column qualifiers are

mutable and may differ greatly between rows.

❖ Timestamp: long milliseconds, sorted descending

➢ A timestamp is written alongside each value, and is the identifier for a

given version of a value.

➢ By default, the timestamp represents the time on the RegionServer when

the data was written, but you can specify a different timestamp value when

you put data into the cell

❖ Cell:

➢ A combination of row, column family, and column qualifier, and contains a

value and a timestamp, which represents the value’s version

❖ (Row, Family:<Column, Value>, Timestamp) → Value

9.44

HBase Data Model Examples

Row key

Column Family

valueTimeStamp

HBase is based on Google’s Bigtable model

9.45

HBase Data Model Examples

Row key
Time

Stamp

Column

“content

s:”

Column “anchor:”

“com.apac
he.ww

w”

t12
“<html>

…”

t11
“<html>

…”

t10
“anchor:apache

.com”
“APACH

E”

“com.cnn.w

ww”

t15
“anchor:cnnsi.co

m”
“CNN”

t13
“anchor:my.look.

ca”
“CNN.co

m”

t6
“<html>

…”

t5
“<html>

…”

t3
“<html>

…”

Column family named “Contents” Column family named “anchor”

Column qualifier

❖ Key

➢ Byte array

➢ Serves as the primary
key for the table

➢ Indexed for fast lookup

❖ Column Family

➢ Has a name (string)

➢ Contains one or more
related columns

❖ Column Qualifier

➢ Belongs to one column
family

➢ Included inside the row

 familyName:column
Name

9.46

HBase Data Model Examples

Row key
Time

Stamp

Column

“content

s:”

Column “anchor:”

“com.apac
he.ww

w”

t12
“<html>

…”

t11
“<html>

…”

t10
“anchor:apache

.com”
“APACH

E”

“com.cnn.w

ww”

t15
“anchor:cnnsi.co

m”
“CNN”

t13
“anchor:my.look.

ca”
“CNN.co

m”

t6
“<html>

…”

t5
“<html>

…”

t3
“<html>

…”

Version number for each row

value

❖ Version Number

➢ Unique within each

key

➢ By default→

System’s

timestamp

➢ Data type is Long

❖ Value

➢ Byte array

9.47

HBase Data Model Examples

❖ Storage: every "cell" (i.e. the time-versioned value of one column in

one row) is stored "fully qualified" (with its full rowkey, column family,

column name, etc.) on disk

Row Timestamp
Column family:

animal:

Column

family:

repairs:

animal:type animal:size repairs:cost

enclosure1
t2 zebra 1000 EUR

t1 lion big

enclosure2 … … … …

Column family animal:

(enclosure1, t2, animal:type) zebra

(enclosure1, t1, animal:size) big

(enclosure1, t1, animal:type) lion

Column family repairs: (enclosure1, t1, repairs:cost) 1000 EUR

9.48

HBase Data Model Examples

9.49

HBase Data Model

❖ Row:

➢ The "row" is atomic, and gets flushed to disk periodically. But it

doesn't have to be flushed into just a single file!

➢ It can be broken up into different files with different properties, an

reads can look at just a subset.

❖ Column Family: divide columns into physical files

➢ Columns within the same family are stored together

➢ Why? Table is sparse, many columns

 No need to scan the whole row when accessing a few columns

 Each column a file will generate too many files

❖ Row keys, column names, values: arbitrary bytes

❖ Table and column family names: printable characters

❖ Timestamps: long integers

9.50

Notes on Data Model

❖ HBase schema consists of several Tables

❖ Each table consists of a set of Column Families

➢ Columns are not part of the schema

❖ HBase has Dynamic Columns

➢ Because column names are encoded inside the cells

➢ Different cells can have different columns

“Roles” column family

has different columns

in different cells

9.51

Notes on Data Model (Cont’d)

❖ The version number can be user-supplied

➢ Even does not have to be inserted in increasing order

➢ Version number are unique within each key

❖ Table can be very sparse

➢ Many cells are empty

❖ Keys are indexed as the primary key

A conceptual view of HBase table

9.52

HBase Physical View

❖ Each column family is stored in a separate file (called HTables)

❖ Key & Version numbers are replicated with each column family

❖ Empty cells are not stored

9.53

HBase Physical Model

9.54

HBase Physical Model

❖ Column Families stored separately on disk: access one without

wasting I/O on the other

❖ HBase Regions

➢ Each HTable (column family) is partitioned horizontally into

regions

 Regions are counterpart to HDFS blocks

Each will be one region

9.55

HBase Architecture

❖ Major Components

➢ The MasterServer (HMaster)

 One master server

 Responsible for coordinating the slaves

 Assigns regions, detects failures

 Admin functions

➢ The RegionServer (HRegionServer)

 Many region servers

 Region (HRegion)

– A subset of a table’s rows, like horizontal range partitioning

– Automatically done

 Manages data regions

 Serves data for reads and writes (using a log)

➢ The HBase client

9.56

HBase Architecture

9.57

ZooKeeper

❖ HBase clusters can be huge and coordinating the operations of the

MasterServers, RegionServers, and clients can be a daunting task,

but that’s where Zookeeper enters the picture.

❖ Zookeeper is a distributed cluster of servers that collectively provides

reliable coordination and synchronization services for clustered

applications.

❖ HBase depends on ZooKeeper

❖ By default HBase manages the

 ZooKeeper instance

➢ E.g., starts and stops ZooKeeper

❖ HMaster and HRegionServers register

 themselves with ZooKeeper

9.58

Install HBase

❖ Install Java and Hadoop first

❖ Download at: https://hbase.apache.org/

❖ The current stable version： 2.5.5

❖ Install:

❖ Environment variables in ~/.bashrc

❖ Edit hbase-env.sh: $ vim $HBASE_HOME/conf/hbase-env.sh

➢ hbase maintains its own ZooKeeper

$ tar xzf hbase- 2.5.5.tar.gz

$ mv hbase- 2.5.5 ~/hbase

export HBASE_HOME = ~/hbase

export PATH = $HBASE_HOME/bin:$PATH

export JAVA_HOME = /usr/lib/jvm/…

export HBASE_MANAGES_ZK = true

https://hbase.apache.org/

9.59

Configure HBase as Pseudo-Distributed Mode

❖ Configure hbase-site.xml: $ vim $HBASE_HOME/conf/hbase-site.xml

➢ hbase.rootdir： must be consistent with HDFS configuration

➢ hbase.cluster.distributed: directs HBase to run in distributed mode,

with one JVM instance per daemon

➢ More configurations refer to:

https://hbase.apache.org/book.html#config.files

❖ Start HBase: $ start-hbase.sh

❖ Launch the HBase Shell: $ hbase shell

<configuration>

<property>

<name>hbase.rootdir</name>

<value>hdfs://localhost:9000/hbase</value>

</property>

<property>

<name>hbase.cluster.distributed</name>

<value>true</value>

</property>

</configuration>

https://hbase.apache.org/book.html#config.files

9.60

HBase Shell Commands

❖ Create a table

❖ List Information About your Table

❖ Put data into your table

❖ Scan the table for all data at once

9.61

HBase Shell Commands

❖ Describe a table

❖ Get a single row of data

❖ Assign a defined table to a variable; use the variable for operation

9.62

HBase Shell Commands

❖ Disable a table

➢ If you want to delete a table or change its settings, as well as in

some other situations, you need to disable the table first

➢ You can re-enable it using the enable command.

❖ Drop (delete) the table

❖ Exit the HBase Shell

➢ To exit the HBase Shell and disconnect from your cluster, use

the quit command. HBase is still running in the background.

9.63

HBase Shell Commands

❖ You can also enter HBase Shell commands into a text file, one

command per line, and pass that file to the HBase Shell.

create 'test', 'cf'

list 'test'

put 'test', 'row1', 'cf:a', 'value1'

put 'test', 'row2', 'cf:b', 'value2'

put 'test', 'row3', 'cf:c', 'value3'

scan 'test'

get 'test', 'row1'

9.64

HBase benefits than RDBMS

❖ No real indexes

❖ Automatic partitioning

❖ Scale linearly and automatically with new nodes

❖ Commodity hardware

❖ Fault tolerance

❖ Batch processing

9.65

HBase vs. RDBMS

9.66

When to use HBase

❖ You need random write, random read, or both (but not neither,

otherwise stick to HDFS)

❖ You need to do many thousands of operations per second on multiple

TB of data

❖ Your acces patterns are well-known and simple

9.67

References

❖ https://hbase.apache.org/book.html

❖ Hadoop The Definitive Guide. HBase Chapter

❖ http://www.cs.kent.edu/~jin/Cloud12Spring/HbaseHivePig.pptx

https://hbase.apache.org/book.html
http://www.cs.kent.edu/~jin/Cloud12Spring/HbaseHivePig.pptx

End of Chapter 9.1

	Slide 1: COMP9313: Big Data Management Lecturer: Xin Cao Course web site: http://www.cse.unsw.edu.au/~cs9313/
	Slide 2
	Slide 3
	Slide 4: What does RDBMS provide?
	Slide 5: What is NoSQL?
	Slide 6: What is NoSQL?
	Slide 7: Why NoSQL？
	Slide 8: Who are Using NoSQL?
	Slide 9: Three Major Papers for NoSQL
	Slide 10: CAP Theorem
	Slide 11: CAP Theorem
	Slide 12: CAP Theorem: Consistency
	Slide 13: ACID & CAP
	Slide 14: Consistency Model
	Slide 15: Eventual Consistency
	Slide 16: Eventual Consistency
	Slide 17: CAP Theorem: Availability
	Slide 18: CAP Theorem: Partition-Tolerance
	Slide 19: CAP Theorem
	Slide 20: NoSQL Taxonomy
	Slide 21: Key-value
	Slide 22: Key-value
	Slide 23: Key-value
	Slide 24: Key-value
	Slide 25: Document-based
	Slide 26: Document-based
	Slide 27: Column-based
	Slide 28: Column-based
	Slide 29: Column-based
	Slide 30: Graph-based
	Slide 31: NoSQL Pros/Cons
	Slide 32: Conclusion
	Slide 33
	Slide 34: What is HBase?
	Slide 35: How Data is Stored in HBase ?
	Slide 36: What is HBase? (Cont’)
	Slide 37: HBase: Part of Hadoop’s Ecosystem
	Slide 38: HBase vs. HDFS
	Slide 39: HBase vs. HDFS
	Slide 40: HBase Characteristics
	Slide 41: Too Big, or Not Too Big
	Slide 42: HBase Data Model
	Slide 43: HBase Data Model (Cont’)
	Slide 44: HBase Data Model Examples
	Slide 45: HBase Data Model Examples
	Slide 46: HBase Data Model Examples
	Slide 47: HBase Data Model Examples
	Slide 48: HBase Data Model Examples
	Slide 49: HBase Data Model
	Slide 50: Notes on Data Model
	Slide 51: Notes on Data Model (Cont’d)
	Slide 52: HBase Physical View
	Slide 53: HBase Physical Model
	Slide 54: HBase Physical Model
	Slide 55: HBase Architecture
	Slide 56: HBase Architecture
	Slide 57: ZooKeeper
	Slide 58: Install HBase
	Slide 59: Configure HBase as Pseudo-Distributed Mode
	Slide 60: HBase Shell Commands
	Slide 61: HBase Shell Commands
	Slide 62: HBase Shell Commands
	Slide 63: HBase Shell Commands
	Slide 64: HBase benefits than RDBMS
	Slide 65: HBase vs. RDBMS
	Slide 66: When to use HBase
	Slide 67: References
	Slide 68: End of Chapter 9.1

