
COMP9313: Big Data Management

Lecturer: Xin Cao
Course web site: http://www.cse.unsw.edu.au/~cs9313/

6.2

Chapter 6.1: Mining Data Streams

6.3

Data Streams

❖ In many data mining situations, we do not know the entire data set in

advance

❖ Stream Management is important when the input rate is controlled

externally:

➢ Google queries

➢ Twitter or Facebook status updates

❖ We can think of the data as infinite and non-stationary (the

distribution changes over time)

6.4

Characteristics of Data Streams

❖ Traditional DBMS: data stored in finite, persistent data sets

❖ Data Streams: distributed, continuous, unbounded, rapid, time

varying, noisy, . . .

❖ Characteristics

➢ Huge volumes of continuous data, possibly infinite

➢ Fast changing and requires fast, real-time response

➢ Random access is expensive—single scan algorithm (can only

have one look)

➢ Store only the summary of the data seen thus far

6.5

Massive Data Streams

❖ Data is continuously growing faster than our ability to store or index it

❖ There are 3 Billion Telephone Calls in US each day,

30 Billion emails daily, 1 Billion SMS, IMs

❖ Scientific data: NASA's observation satellites generate billions of

readings each per day

❖ IP Network Traffic: up to 1 Billion packets per hour per router. Each

ISP has many (hundreds) routers!

❖ … …

6.6

The Stream Model

❖ Input elements enter at a rapid rate, at one or more input ports (i.e.,

streams)

➢ We call elements of the stream tuples

❖ The system cannot store the entire stream accessibly

❖ Q: How do you make critical calculations about the stream using

a limited amount of memory?

6.7

Database Management System (DBMS) Data

Processing

Processor

Ad-Hoc

Queries
Output

Data Storage

(RDBMS, NoSQL,

Big Data Processing

Platforms, etc.)

Standing

Queries

6.8

General Data Stream Management System

(DSMS) Processing Model

Processor

Limited

Working

Storage

. . . 1, 5, 2, 7, 0, 9, 3

. . . a, r, v, t, y, h, b

. . . 0, 0, 1, 0, 1, 1, 0

time

Streams Entering.

Each stream is

composed of

elements/tuples

Ad-Hoc

Queries

Output

Archival

Storage

Standing

Queries

6.9

DBMS vs. DSMS #1

Query Processing

Continuous Query (CQ) Result

Query Processing

Main MemoryData Stream(s) Data Stream(s)

Disk

Main Memory

SQL Query Result

6.10

DBMS vs. DSMS #2

❖ Traditional DBMS:

➢ stored sets of relatively
static records with no
pre-defined notion of
time

➢ good for applications
that require persistent
data storage and
complex querying

DSMS:

support on-line analysis of
rapidly changing data
streams

data stream: real-time,
continuous, ordered
(implicitly by arrival time or
explicitly by timestamp)
sequence of items, too
large to store entirely, no
ending

continuous queries

6.11

DBMS vs. DSMS #3

DBMS

❖ Persistent relations

(relatively static, stored)

❖ One-time queries

❖ Random access

❖ “Unbounded” disk store

❖ Only current state matters

❖ No real-time services

❖ Relatively low update rate

❖ Data at any granularity

❖ Assume precise data

❖ Access plan determined by query

processor, physical DB design

DSMS

❖ Transient streams

(on-line analysis)

❖ Continuous queries (CQs)

❖ Sequential access

❖ Bounded main memory

❖ Historical data is important

❖ Real-time requirements

❖ Possibly multi-GB arrival rate

❖ Data at fine granularity

❖ Data stale/imprecise

❖ Unpredictable/variable data arrival and

characteristics

6.12

Problems on Data Streams

❖ Types of queries one wants on answer on a data stream: (we’ll learn

these today)

➢ Sampling data from a stream

 Construct a random sample

➢ Queries over sliding windows

 Number of items of type x in the last k elements of the stream

➢ Filtering a data stream

 Select elements with property x from the stream

➢ Counting distinct elements

 Number of distinct elements in the last k elements of the

stream

➢ Finding frequent elements

➢ … …

6.13

Applications

❖ Mining query streams

➢ Google wants to know what queries are more frequent today than

yesterday

❖ Mining click streams

➢ Yahoo wants to know which of its pages are getting an unusual

number of hits in the past hour

❖ Mining social network news feeds

➢ E.g., look for trending topics on Twitter, Facebook

❖ Sensor Networks

➢ Many sensors feeding into a central controller

❖ Telephone call records

➢ Data feeds into customer bills as well as settlements between

telephone companies

❖ IP packets monitored at a switch

➢ Gather information for optimal routing

6.14

Example: IP Network Data

❖ Networks are sources of massive data: the metadata per hour per IP router

is gigabytes

❖ Fundamental problem of data stream analysis:

➢ Too much information to store or transmit

❖ So process data as it arrives

➢ One pass, small space: the data stream approach

❖ Approximate answers to many questions are OK, if there are guarantees

of result quality

Part 1: Sampling Data Streams

6.16

Sampling from a Data Stream

❖ Since we can not store the entire stream, one obvious approach is to store a
sample

❖ Two different problems:

➢ (1) Sample a fixed proportion of elements in the stream (say 1 in 10)

 As the stream grows the sample also gets bigger

➢ (2) Maintain a random sample of fixed size over a potentially infinite
stream

 As the stream grows, the sample is of fixed size

 At any “time” t we would like a random sample of s elements

– What is the property of the sample we want to maintain?
For all time steps t, each of t elements seen so far has
equal probability of being sampled

6.17

Sampling a Fixed Proportion

❖ Problem 1: Sampling fixed proportion

❖ Scenario: Search engine query stream

➢ Stream of tuples: (user, query, time)

➢ Answer questions such as: How often did a user run the

same query in a single days

➢ Have space to store 1/10th of query stream

❖ Naïve solution:

➢ Generate a random integer in [0..9] for each query

➢ Store the query if the integer is 0, otherwise discard

6.18

Problem with Naïve Approach

❖ Simple question: What fraction of queries by an average search engine user

are duplicates?

➢ Suppose each user issues x queries once and d queries twice (total of

x+2d queries)

 Correct answer: d/(x+d)

➢ Proposed solution: We keep 10% of the queries

 Sample will contain x/10 of the singleton queries and

2d/10 of the duplicate queries at least once

 But only d/100 pairs of duplicates

– d/100 = 1/10 ∙ 1/10 ∙ d

 Of d “duplicates” 18d/100 appear exactly once

– 18d/100 = ((1/10 ∙ 9/10)+(9/10 ∙ 1/10)) ∙ d

➢ So the sample-based answer is

𝑑

100
𝑥

10
+

𝑑

100
+
18𝑑

100

=
𝒅

𝟏𝟎𝒙+𝟏𝟗𝒅
≠d/(x+d)

6.19

Solution: Sample Users

Solution:

❖ Pick 1/10th of users and take all their searches in the sample

❖ Use a hash function that hashes the username or user id uniformly

into 10 buckets

➢ We hash each username to one of ten buckets, 0 through 9

➢ If the user hashes to bucket 0, then accept this search query for

the sample, and if not, then not.

6.20

Generalized Problem and Solution

❖ Problem: Give a data stream, take a sample of fraction a/b.

❖ Stream of tuples with keys:

➢ Key is some subset of each tuple’s components

 e.g., tuple is (user, search, time); key is user

➢ Choice of key depends on application

❖ To get a sample of a/b fraction of the stream:

➢ Hash each tuple’s key uniformly into b buckets

➢ Pick the tuple if its hash value is at most a

How to generate a 30% sample?

Hash into b=10 buckets, take the tuple if it hashes to one of the first 3 buckets

6.21

Sample Operator in Spark

❖ sample(withReplacement, fraction, seed)

➢ Return a sampled subset of this RDD.

➢ withReplacement: can elements be sampled multiple times

➢ fraction: expected size of the sample as a fraction of this RDD’s

size without replacement

 This is not guaranteed to provide exactly the fraction specified

of the total count of the given

➢ seed: seed for the random number generator

6.22

Maintaining a Fixed-size Sample

❖ Problem 2: Fixed-size sample

❖ Suppose we need to maintain a random sample S of size exactly s

tuples

➢ E.g., main memory size constraint

❖ Why? Don’t know length of stream in advance

❖ Suppose at time n we have seen n items

➢ Each item is in the sample S with equal prob. s/n

How to think about the problem: say s = 2

Stream: a x c y z k c d e g…

At n= 5, each of the first 5 tuples is included in the sample S with equal prob.

At n= 7, each of the first 7 tuples is included in the sample S with equal prob.

Impractical solution would be to store all the n tuples seen
so far and out of them pick s at random

Note that the same item is

treated as different tuples at

different timestamps

6.23

Solution: Fixed Size Sample

❖ Algorithm (a.k.a. Reservoir Sampling)

➢ Store all the first s elements of the stream to S

➢ Suppose we have seen n-1 elements, and now the nth element arrives

(n > s)

 With probability s/n, keep the nth element, else discard it

 If we picked the nth element, then it replaces one of the s elements

in the sample S, picked uniformly at random

❖ Claim: This algorithm maintains a sample S with the desired property:

➢ After n elements, the sample contains each element seen so far with

probability s/n

6.24

Proof: By Induction

❖ We prove this by induction:

➢ Assume that after n elements, the sample contains each element

seen so far with probability s/n

➢ We need to show that after seeing element n+1 the sample

maintains the property

 Sample contains each element seen so far with probability

s/(n+1)

❖ Base case:

➢ After we see n=s elements the sample S has the desired property

 Each out of n=s elements is in the sample with probability s/s

= 1

6.25

Proof: By Induction

❖ Inductive hypothesis: After n elements, the sample S contains each

element seen so far with prob. s/n

❖ Now element n+1 arrives

❖ Inductive step: For elements already in S, probability that the

algorithm keeps it in S is:

❖ So, at time n, tuples in S were there with prob. s/n

❖ Time n→n+1, tuple stayed in S with prob. n/(n+1)

❖ So prob. tuple is in S at time n+1 =
𝒔

𝒏
⋅

𝒏

𝒏+𝟏
=

𝒔

𝒏+𝟏

1

1

11
1

+
=







 −









+
+








+
−

n

n

s

s

n

s

n

s

Element n+1 discarded Element n+1

not discarded

Element in the

sample not picked

6.26

takeSample Operator in Spark

❖ takeSample(withReplacement, num, seed=None)

➢ Return a fixed-size sampled subset of this RDD.

➢ withReplacement: can elements be sampled multiple times

➢ num: sample size

➢ This method should only be used if the resulting array is expected

to be small, as all the data is loaded into the driver’s memory.

Part 2: Querying Data Streams

6.28

Sliding Windows

❖ A useful model of stream processing is that queries are about a window of

length N – the N most recent elements received

❖ Interesting case: N is so large that the data cannot be stored in memory, or

even on disk

➢ Or, there are so many streams that windows for all cannot be stored

❖ Amazon example:

➢ For every product X we keep 0/1 stream of whether that product was

sold in the n-th transaction

➢ We want answer queries, how many times have we sold X in the last k

sales

6.29

Sliding Window: 1 Stream

❖ Sliding window on a single stream:

q w e r t y u i o p a s d f g h j k l z x c v b n m

q w e r t y u i o p a s d f g h j k l z x c v b n m

q w e r t y u i o p a s d f g h j k l z x c v b n m

q w e r t y u i o p a s d f g h j k l z x c v b n m

Past Future

N = 7

6.30

Counting Bits (1)

❖ Problem:

➢ Given a stream of 0s and 1s

➢ Be prepared to answer queries of the form:
How many 1s are in the last k bits? where k ≤ N

❖ Obvious solution:

➢ Store the most recent N bits

 When new bit comes in, discard the N+1st bit

0 1 0 0 1 1 0 1 1 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0

Past Future

Suppose N=7

6.31

Counting Bits (2)

❖ You can not get an exact answer without storing the entire window

❖ Real Problem:

What if we cannot afford to store N bits?

➢ E.g., we’re processing 1 billion streams and N = 1 billion

❖ But we are happy with an approximate answer

0 1 0 0 1 1 0 1 1 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0

Past Future

6.32

An attempt: Simple solution

❖ Q: How many 1s are in the last N bits?

❖ A simple solution that does not really solve our problem: Uniformity

Assumption

❖ Maintain 2 counters:

➢ S: number of 1s from the beginning of the stream

➢ Z: number of 0s from the beginning of the stream

❖ How many 1s are in the last N bits? 𝑵 ∙
𝑺

𝑺+𝒁

❖ But, what if stream is non-uniform?

➢ What if distribution changes over time?

0 1 0 0 1 1 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 1 1 0 1 1 0 1 1 1 0 0 1 0 1 0 1 1 0 0 1 1 0 1 0

N

Past Future

6.33

The Datar-Gionis-Indyk-Motwani (DGIM)

Algorithm

❖ Maintaining Stream Statistics over Sliding Windows (SODA’02)

❖ DGIM solution that does not assume uniformity

❖ We store 𝑶(log𝟐𝑵) bits per stream

➢ If 𝑵 = 2^16 (64KB), log (log 𝑵) = log (16) = 4

❖ Solution gives approximate answer, never off by more than 50%

➢ Error factor can be reduced to any fraction > 0, with more

complicated algorithm and proportionally more stored bits

6.34

Idea: Exponential Windows

❖ Solution that doesn’t (quite) work:

➢ Summarize exponentially increasing regions of the stream,

looking backward

➢ Drop small regions if they begin at the same point as a larger

region

0 1 0 0 1 1 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 1 1 0 1 1 0 1 1 1 0 0 1 0 1 0 1 1 0 0 1 1 0 1 0
N

?

01

12

23

4

106

We can reconstruct the count of the last N bits, except we are not

sure how many of the last 6 1s are included in the N

Window of

width 16

has 6 1s

6.35

What’s Good?

❖ Stores only 𝑶(log𝟐𝑵) bits

➢ 𝑶(log𝑵) counts of log𝟐𝑵 bits each

❖ Easy update as more bits enter

❖ Error in count no greater than the number of 1s in the “unknown”

area

6.36

What’s Not So Good?

❖ As long as the 1s are fairly evenly distributed, the error due to the

unknown region is small – no more than 50%

❖ But it could be that all the 1s are in the unknown area at the end

❖ In that case, the error is unbounded!

➢ Because that the number of 1’s in the known regions could be 0!

01

12

23

4

106

N

?

0 1 0 0 1 1 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 1 1 0 1 1 0 1 1 1 0 0 1 0 1 0 1 1 0 0 1 1 0 1 0

6.37

Fixup: DGIM Algorithm

❖ Idea: Instead of summarizing fixed-length blocks, summarize blocks

with specific number of 1s:

➢ Let the block sizes (number of 1s) increase exponentially

❖ When there are few 1s in the window, block sizes stay small, so errors

are small

1001010110001011010101010101011010101010101110101010111010100010110010

N

6.38

DGIM: Timestamps

❖ Each bit in the stream has a timestamp, starting from 1, 2, …

❖ Record timestamps modulo N (the window size), so we can

represent any relevant timestamp in 𝑶(log𝟐𝑵) bits

➢ E.g., given the windows size 40 (N), timestamp 123 will be

recorded as 3, and thus the encoding is on 3 rather than 123

6.39

DGIM: Buckets

❖ A bucket in the DGIM method is a record consisting of:

➢ (A) The timestamp of its end [𝑶(log𝑵) bits]

➢ (B) The number of 1s between its beginning and end [𝑶(loglog𝑵)
bits]

❖ Constraint on buckets:

➢ Number of 1s must be a power of 2

➢ That explains the 𝑶(loglog𝑵) in (B) above

1001010110001011010101010101011010101010101110101010111010100010110010

6.40

Representing a Stream by Buckets

❖ The right end of a bucket is always a position with a 1

❖ Every position with a 1 is in some bucket

❖ Either one or two buckets with the same power-of-2 number of 1s

❖ Buckets do not overlap in timestamps

❖ Buckets are sorted by size

➢ Earlier buckets are not smaller than later buckets

❖ Buckets disappear when their end-time is > N time units in the past

6.41

Example: Bucketized Stream

N

1 of

size 2

2 of

size 4

2 of

size 8

At least 1 of

size 16. Partially

beyond window.

2 of

size 1

1001010110001011010101010101011010101010101110101010111010100010110010

❖ Three properties of buckets that are maintained:

➢ Either one or two buckets with the same power-of-2 number of 1s

➢ Buckets do not overlap in timestamps

➢ Buckets are sorted by size

6.42

Updating Buckets

❖ When a new bit comes in, drop the last (oldest) bucket if its end-time

is prior to N time units before the current time

❖ 2 cases: Current bit is 0 or 1

❖ If the current bit is 0: no other changes are needed

❖ If the current bit is 1:

➢ (1) Create a new bucket of size 1, for just this bit

 End timestamp = current time

➢ (2) If there are now three buckets of size 1, combine the oldest

two into a bucket of size 2

➢ (3) If there are now three buckets of size 2, combine the oldest

two into a bucket of size 4

➢ (4) And so on …

6.43

Example: Updating Buckets

1001010110001011010101010101011010101010101110101010111010100010110010

0010101100010110101010101010110101010101011101010101110101000101100101

0010101100010110101010101010110101010101011101010101110101000101100101

0101100010110101010101010110101010101011101010101110101000101100101101

0101100010110101010101010110101010101011101010101110101000101100101101

0101100010110101010101010110101010101011101010101110101000101100101101

Current state of the stream:

Bit of value 1 arrives

Two white buckets get merged into a yellow bucket

Next bit 1 arrives, new orange white is created, then 0 comes, then 1:

Buckets get merged…

State of the buckets after merging

6.44

How to Query?

❖ To estimate the number of 1s in the most recent N bits:

➢ Sum the sizes of all buckets but the last

 (note “size” means the number of 1s in the bucket)

➢ Add half the size of the last bucket

❖ Remember: We do not know how many 1s of the last bucket are still

within the wanted window

❖ Example:

N

1 of

size 2

2 of

size 4

2 of

size 8

At least 1 of

size 16. Partially

beyond window.

2 of

size 1

1001010110001011010101010101011010101010101110101010111010100010110010

6.45

Error Bound: Proof

❖ Why is error 50%? Let’s prove it!

❖ Suppose the last bucket has size 2r

❖ Then by assuming 2r-1 (i.e., half) of its 1s are still within the window,

we make an error of at most 2r-1

❖ Since there is at least one bucket of each of the sizes less than 2r, the

true sum is at least

1 + 2 + 4 + .. + 2r-1 = 2r -1

❖ Thus, error at most 50%

111111110000000011101010101011010101010101110101010111010100010110010

N

At least 16 1s

6.46

Further Reducing the Error

❖ Instead of maintaining 1 or 2 of each size bucket, we allow either r-1

or r buckets (r > 2)

➢ Except for the largest size buckets; we can have any number

between 1 and r of those

❖ Error is at most O(1/r)

➢ WHY?

❖ By picking r appropriately, we can tradeoff between number of bits we

store and the error

6.47

Extensions (optional)

❖ Can we use the same trick to answer queries How many 1’s in the

last k? where k < N?

➢ A: Find earliest bucket B that at overlaps with k.

Number of 1s is the sum of sizes of more recent buckets + ½

size of B

❖ Can we handle the case where the stream is not bits, but

integers, and we want the sum of the last k elements?

1001010110001011010101010101011010101010101110101010111010100010110010

k

6.48

Extensions (optional)

❖ Stream of positive integers

❖ We want the sum of the last k elements

➢ Amazon: Avg. price of last k sales

❖ Solution:

➢ (1) If you know all have at most m bits

 Treat m bits of each integer as a separate stream

 Use DGIM to count 1s in each integer

 The sum is = σ𝑖=0
𝑚−1 𝑐𝑖2

𝑖

➢ (2) Use buckets to keep partial sums

 Sum of elements in size b bucket is at most 2b

ci …estimated count for the i-th bit

2 5 7 1 3 8 4 6 7 9 1 3 7 6 5 3 5 7 1 3 3 1 2 2 6

2 5 7 1 3 8 4 6 7 9 1 3 7 6 5 3 5 7 1 3 3 1 2 2 6 3

2 5 7 1 3 8 4 6 7 9 1 3 7 6 5 3 5 7 1 3 3 1 2 2 6 3 2

2 5 7 1 3 8 4 6 7 9 1 3 7 6 5 3 5 7 1 3 3 1 2 2 6 3 2 5

Idea: Sum in each

bucket is at most

2b (unless bucket

has only 1 integer)

Bucket sizes:

12816 4

6.49

References

❖ Chapter 4, Mining of Massive Datasets.

End of Chapter 6.1

