COMP9313: Big Data Management

Spqr{(\z

Lecturer: Xin Cao

Course web site: http://www.cse.unsw.edu.au/~cs9313/

Chapter 6.1: Mining Data Streams

&

L)

4

L)

L)

*

>

>

>

Data Streams

In many data mining situations, we do not know the entire data set in
advance

Stream Management is important when the input rate is controlled
externally:

Google queries
Twitter or Facebook status updates

We can think of the data as infinite and non-stationary (the
distribution changes over time)

6.3

Characteristics of Data Streams

< Traditional DBMS: data stored in finite, persistent data sets

< Data Streams: distributed, continuous, unbounded, rapid, time
varying, noisy, . . .

< Characteristics
Huge volumes of continuous data, possibly infinite
Fast changing and requires fast, real-time response

Random access is expensive—single scan algorithm (can only
have one look)

Store only the summary of the data seen thus far

6.4

Massive Data Streams

Data is continuously growing faster than our ability to store or index it

There are 3 Billion Telephone Calls in US each day,
30 Billion emails daily, 1 Billion SMS, IMs

Scientific data: NASA's observation satellites generate billions of
readings each per day

IP Network Traffic: up to 1 Billion packets per hour per router. Each
ISP has many (hundreds) routers!

6.5

The Stream Model

< Input elements enter at a rapid rate, at one or more input ports (i.e.,
streams)

We call elements of the stream tuples
< The system cannot store the entire stream accessibly

< Q: How do you make critical calculations about the stream using
a limited amount of memory?

6.6

Database Management System (DBMS) Data
Processing

Standing
Queries

Ad-Hoc

. S » Output
Queries P

Processor

TN
w
Data Storage
(RDBMS, NoSQL,
Big Data Processing
Platforms, etc.)

~

6.7

General Data Stream Management System
(DSMS) Processing Model

Ad-Hoc
Queries
...1,52,7,0,9,3 —Mm Standing
Queries
. anvtyhb . Output
0010110 Processor
. —p
time
: /N
Streams Entering.
Each stream is
composed of
elements/tuples o
Limited A
Working
Storage Archival
N Storage

~

6.8

DBMS vs. DSMS #1

SQL Query /Rgsult Continuous Query (CQ) Result
Query Processing Query Processing
Main Memory _
Data Stream(s) > Maln Memory |pata Stream(s>
\Disk

6.9

DBMS vs. DSMS #2

< Traditional DBMS: 0 DSMS:

stored sets of relatively
static records with no
pre-defined notion of
time

good for applications
that require persistent
data storage and
complex querying

6.10

support on-line analysis of
rapidly changing data
streams

data stream: real-time,
continuous, ordered
(implicitly by arrival time or
explicitly by timestamp)
sequence of items, too
large to store entirely, no
ending

continuous queries

DBMS vs. DSMS #3

DBMS

< Persistent relations
(relatively static, stored)

< One-time queries

< Random access

< “Unbounded” disk store

< Only current state matters
< No real-time services

< Relatively low update rate
< Data at any granularity

< Assume precise data

< Access plan determined by query
processor, physical DB design

6.11

DSMS

Transient streams
(on-line analysis)

Continuous queries (CQs)
Sequential access

Bounded main memory
Historical data is important
Real-time requirements
Possibly multi-GB arrival rate
Data at fine granularity

Data stale/imprecise

Unpredictable/variable data arrival and
characteristics

Problems on Data Streams

< Types of queries one wants on answer on a data stream: (we’ll learn
these today)

Sampling data from a stream
Construct a random sample
Queries over sliding windows
Number of items of type x in the last k elements of the stream
Filtering a data stream
Select elements with property x from the stream
Counting distinct elements

Number of distinct elements in the last k elements of the
stream

Finding frequent elements

6.12

&

4

4

4

4

4

Applications

Mining query streams

Google wants to know what queries are more frequent today than
yesterday

Mining click streams

Yahoo wants to know which of its pages are getting an unusual
number of hits in the past hour

Mining social network news feeds

E.g., look for trending topics on Twitter, Facebook
Sensor Networks

Many sensors feeding into a central controller
Telephone call records

Data feeds into customer bills as well as settlements between
telephone companies

IP packets monitored at a switch
Gather information for optimal routing

6.13

4

L)

Example: IP Network Data

Networks are sources of massive data: the metadata per hour per IP router
IS gigabytes

Fundamental problem of data stream analysis:
Too much information to store or transmit
So process data as it arrives
One pass, small space: the data stream approach

Approximate answers to many questions are OK, if there are guarantees
of result quality

6.14

Part 1: Sampling Data Streams

Sampling from a Data Stream

< Since we can not store the entire stream, one obvious approach is to store a

sample
000000000000000000000000000 000
000000000000000000 Q0
00000000 O

< Two different problems:
(1) Sample a fixed proportion of elements in the stream (say 1 in 10)
» As the stream grows the sample also gets bigger

(2) Maintain a random sample of fixed size over a potentially infinite
stream

» As the stream grows, the sample is of fixed size
» At any “time” t we would like a random sample of s elements

What is the property of the sample we want to maintain?
For all time steps t, each of t elements seen so far has
equal probability of being sampled

6.16

Sampling a Fixed Proportion

< Problem 1: Sampling fixed proportion
< Scenario: Search engine query stream
Stream of tuples: (user, query, time)

Answer guestions such as: How often did a user run the
same query in a single days

Have space to store 1/10™ of query stream

< Naive solution:
Generate a random integer in [0..9] for each query
Store the query if the integer is O, otherwise discard

6.17

Problem with Naive Approach

< Simple question: What fraction of queries by an average search engine user
are duplicates?

Suppose each user issues x queries once and d queries twice (total of
x+2d queries)

Correct answer: d/(x+d)
Proposed solution: We keep 10% of the queries

Sample will contain x/10 of the singleton queries and
2d/10 of the duplicate queries at least once

But only d/100 pairs of duplicates
d/100=1/10-110-d

Of d “duplicates” 18d/100 appear exactly once
18d/100 = ((1/10 - 9/10)+(9/10 - 1/10)) - d

d

: 0 d
~ 100 —
So the sample-based answer is %, d 150 7074194 #d/(x+d)
10 100 100

6.18

Solution: Sample Users

Solution:
< Pick 1/10% of users and take all their searches in the sample

< Use a hash function that hashes the username or user id uniformly
into 10 buckets

We hash each username to one of ten buckets, 0 through 9

If the user hashes to bucket O, then accept this search query for
the sample, and if not, then not.

6.19

Generalized Problem and Solution

< Problem: Give a data stream, take a sample of fraction a/b.
< Stream of tuples with keys:

Key is some subset of each tuple’s components

e.g., tuple is (user, search, time); key is user

Choice of key depends on application
< To get a sample of a/b fraction of the stream:

Hash each tuple’s key uniformly into b buckets

Pick the tuple if its hash value is at most a

How to generate a 30% sample?

Hash into b=10 buckets, take the tuple if it hashes to one of the first 3 buckets

6.20

Sample Operator in Spark

< sample(withReplacement, fraction, seed)
Return a sampled subset of this RDD.
withReplacement: can elements be sampled multiple times

fraction: expected size of the sample as a fraction of this RDD’s
size without replacement

This is not guaranteed to provide exactly the fraction specified
of the total count of the given

seed: seed for the random number generator

val rdd = sc.parallelize(1 to 100)
= ParallelCollectionRDD[90] at parallelize at <console=:31

var samplel = rdd.sample(true, 0.4, 2).collect
: = Array(5, 5, 15, 19, 26, 27, 29, 38, 40, 45, 48, 48, 49, 50, 52, 54, 57, 58, 58,
59, 61, 67, 68, 68, 71, 73, 78, 82, 83, 83, 85, 88, 89, 89, 92, 95, 99)

samplel.size
= 37

var sample2 = rdd.sample(false, 0.4, 2).collect
: = Array(4, 5, 6, 7, 15, 21, 23, 26, 27, 36, 41, 42, 43, 44, 49, 50, 51, 52, 54, 61
, 62, 66, 68, 77, 82, 86, 91, 93, 96)

samplez.size
= 29

6.21

Maintaining a Fixed-size Sample

Problem 2: Fixed-size sample

» Suppose we need to maintain a random sample S of size exactly s
tuples

E.g., main memory size constraint
> Why? Don’t know length of stream in advance
> Suppose at time n we have seen n items
Each item is in the sample S with equal prob. s/n

Note that the same item is
How to think about the problem: say s = 2 treated as different tuples at

Stream:faxcyzkqgdeg... different timestamps
At n= 5, each o* tl’ie ?irst 5 tuples is included in the sample S with equal prob.

At n= 7, each of the first 7 tuples is included in the sample S with equal prob.
Impractical solution would be to store all the n tuples seen

so far and out of them pick s at random

6.22

Solution: Fixed Size Sample

< Algorithm (a.k.a. Reservoir Sampling)
Store all the first s elements of the stream to S

Suppose we have seen n-1 elements, and now the nth element arrives
(n>s)

With probability s/n, keep the nt" element, else discard it

If we picked the nt" element, then it replaces one of the s elements
in the sample S, picked uniformly at random

< Claim: This algorithm maintains a sample S with the desired property:

After n elements, the sample contains each element seen so far with
probability s/n

6.23

Proof: By Induction

< We prove this by induction:

Assume that after n elements, the sample contains each element
seen so far with probability s/n

We need to show that after seeing element n+1 the sample
maintains the property

Sample contains each element seen so far with probability
s/(n+1)

% Base case:
After we see n=s elements the sample S has the desired property

Each out of n=s elements is in the sample with probability s/s
=1

6.24

Proof: By Induction

Inductive hypothesis: After n elements, the sample S contains each
element seen so far with prob. s/n

Now element n+1 arrives

Inductive step: For elements already in S, probability that the
algorithm keeps itin S is:

S S s—1 n
11— |+ — | — | =
n+1 n+1 S n+1

Element n+1 Element in the
not discarded sample not picked

Element n+1 discarded

So, attime n, tuples in S were there with prob. s/n
Time n—>n+1, tuple stayed in S with prob. n/(n+1)

n S

s
n n+l n+1

So prob. tuple is in S at time n+1 =

6.25

takeSample Operator in Spark

< takeSample(withReplacement, num, seed=None)
Return a fixed-size sampled subset of this RDD.
withReplacement: can elements be sampled multiple times

num: sample size

This method should only be used if the resulting array is expected
to be small, as all the data is loaded into the driver's memory.

val rdd = sc.parallelize(l to 100)
= ParallelCollectionRDD[95] at parallel

ize at =console=:31

var samplel = rdd.takeSample(true, 20, 1)

: = Array(67, 72, 29, 2, 37, 86, 16, 42, 68, 100, 46, 4,
83, 67, 51, 69, 92, 24, 97, 8)

samplel.size
= 20

6.26

Part 2: Querying Data Streams

Sliding Windows

< A useful model of stream processing is that queries are about a window of
length N — the N most recent elements received

< Interesting case: N is so large that the data cannot be stored in memory, or
even on disk

Or, there are so many streams that windows for all cannot be stored

< Amazon example:

For every product X we keep 0/1 stream of whether that product was
sold in the n-th transaction

We want answer queries, how many times have we sold X in the last k
sales

6.28

Sliding Window: 1 Stream

< Sliding window on a single stream:

gwertyuiopalsdfghjklzxcvbnm

gwertyuiopasjdfghjklzxcvbnm

gwertyuiopasdifghjklzxcvbnm

gwertyuiopasdfghjklzxijcvbnm

«—— Past Future —

6.29

Counting Bits (1)

< Problem:
Given a stream of 0s and 1s

Be prepared to answer queries of the form:
How many 1s are in the last k bits? where k < N

< Obvious solution:
Store the most recent N bits
When new bit comes in, discard the N+1st bit

010011011101010110110110

«— Past Future —

6.30

Suppose N=7

Counting Bits (2)

< You can not get an exact answer without storing the entire window

% Real Problem:
What if we cannot afford to store N bits?

E.g., we're processing 1 billion streams and N =1 billion

/

< But we are happy with an approximate answer

o1oo11o1110101o11

+«—Past Future —

6.31

An attempt: Simple solution

< Q: How many 1s are in the last N bits?

< A simple solution that does not really solve our problem: Uniformity
Assumption

< N >
010011100010100100010110110111001010110011010
<«— Past Future —

< Maintain 2 counters:
S: number of 1s from the beginning of the stream

Z:. number of Os from the beginning of the stream

< How many 1s are in the last N bits? N - s+iz

% But, what if stream is non-uniform?
What if distribution changes over time?

6.32

The Datar-Gionis-Indyk-Motwani (DGIM)
Algorithm

Maintaining Stream Statistics over Sliding Windows (SODA’02)
DGIM solution that does not assume uniformity

We store 0(log?N) bits per stream
If N =216 (64KB), log (log N) = log (16) = 4

Solution gives approximate answer, never off by more than 50%

Error factor can be reduced to any fraction > 0, with more
complicated algorithm and proportionally more stored bits

6.33

Idea: Exponential Windows

< Solution that doesn’t (quite) work:

Summarize exponentially increasing regions of the stream,
looking backward

Drop small regions if they begin at the same point as a larger

region
Window of
width 16
has 6 1s - ——p 10
—_— — 4
3 2
2|1

= 1[o]
01001110001010010;0010110110111001010110011010
"< N >

We can reconstruct the count of the last N bits, except we are not
sure how many of the last 6 1s are included in the N

6.34

What’s Good?

< Stores only O(log? N) bits
O(log N) counts of log, N bits each

< Easy update as more bits enter

< Error in count no greater than the number of 1s in the “unknown”
area

6.35

What’s Not So Good?

< As long as the 1s are fairly evenly distributed, the error due to the
unknown region is small — no more than 50%

< But it could be that all the 1s are in the unknown area at the end
% In that case, the error is unbounded!

Because that the number of 1’s in the known regions could be 0!

6 10

3 2

2|1

1/l

01001110001010010;001011011011N1001010110011010

6.36

Fixup: DGIM Algorithm

< ldea: Instead of summarizing fixed-length blocks, summarize blocks
with specific number of 1s:

Let the block sizes (number of 1s) increase exponentially

< When there are few 1s in the window, block sizes stay small, so errors
are small

10010101100010110101010101010110101010101011101010101110101P00 01

A 4

4 N

6.37

DGIM: Timestamps

< Each bit in the stream has a timestamp, starting from 1, 2, ...

< Record timestamps modulo N (the window size), so we can
represent any relevant timestamp in O(logyN) bits

E.g., given the windows size 40 (N), timestamp 123 will be
recorded as 3, and thus the encoding is on 3 rather than 123

6.38

DGIM: Buckets

< A bucket in the DGIM method is a record consisting of:
(A) The timestamp of its end [0 (log N) bits]
(B) The number of 1s between its beginning and end [0 (loglog N)

bits]

% Constraint on buckets:

Number of 1s must be a power of 2

That explains the O(loglog N) in (B) above

10010101100010110

10101010101011

0

1010101010111

0

1010101

110101

D00

P

101

1(

0P

<

6.39

A\ 4

Representing a Stream by Buckets

The right end of a bucket is always a position with a 1

Every position with a 1 is in some bucket

Either one or two buckets with the same power-of-2 number of 1s
Buckets do not overlap in timestamps

Buckets are sorted by size
Earlier buckets are not smaller than later buckets

Buckets disappear when their end-time is > N time units in the past

6.40

Example: Bucketized Stream

At least 1 of

size 16. Partially

beyond window.

l

2 of
size 8

2 of

size 4

1 of
size 2

2 of
size 1

N A\A

10010101100010110

10101010101011p0

010101010101110

1010101

110101

D00

0L01jL

)010

A

N

< Three properties of buckets that are maintained:

Either one or two buckets with the same power-of-2 number of 1s

Buckets do not overlap in timestamps

Buckets are sorted by size

6.41

v

Updating Buckets

When a new bit comes in, drop the last (oldest) bucket if its end-time
IS prior to N time units before the current time

2 cases: CurrentbitisOor 1

If the current bit is O: no other changes are needed
If the current bit is 1:
(1) Create a new bucket of size 1, for just this bit
End timestamp = current time

(2) If there are now three buckets of size 1, combine the oldest
two into a bucket of size 2

(3) If there are now three buckets of size 2, combine the oldest
two into a bucket of size 4

(4) And soon ...

6.42

Example: Updating Buckets

Current state of the stream:

100101011000101101010101010101ﬂ0

1010101010111

01010101

110101

000

101

DOILD

1

Bit of value 1 arrives

001010110001011(101010101010110

1010101010111

01010101

110101

000101

1

Two white buckets get merged into a yellow bucket

0010101100010110101010101010110

1010101010111

P1010101110

101

000101

1001

Next bit 1 arrives, new orange white is created, then 0 comes, then 1:

0101100010110101010101010110

1010101010111

0

1010101

110101

Buckets get merged...

010110001011010101010101011)01010101010111

0

1010101110101

000

State of the buckets after merging

01011000101101010101010101101010101010111

0

1010101110101

000

6.43

000

101

1001

101

10010

11

1011001

0

ol |

11

How to Query?

< To estimate the number of 1s in the most recent N bits:
Sum the sizes of all buckets but the last
(note “size” means the number of 1s in the bucket)
Add half the size of the last bucket

» Remember: We do not know how many 1s of the last bucket are still
within the wanted window

< Example:

At least 1 of 2 of 2 of 1 of 2 of

size 16. Partially Size 8 size 4 size2 sizel
beyond window

N A\/\

1001010110001011)0101010101010110101010101011101010101j1101010001L01]L()O

A
Z

v

6.44

Error Bound: Proof

<% Why is error 50%? Let’s prove it!
< Suppose the last bucket has size 2"

» Then by assuming 2™ (i.e., half) of its 1s are still within the window,
we make an error of at most 21

% Since there is at least one bucket of each of the sizes less than 2", the
true sum is at least
1+2+4+ .. +2r1 =2r-1

% Thus, error at most 50%

At least 16 1s
A

11111111000000001j110101010101101010101010111/011010101j110101000101

< N

6.45

A 4

L)

L)

&

&

>

>

4

L)

>

Further Reducing the Error

Instead of maintaining 1 or 2 of each size bucket, we allow either r-1
or r buckets (r > 2)

Except for the largest size buckets; we can have any number
between 1 and r of those

Error is at most O(1/r)
WHY?

By picking r appropriately, we can tradeoff between number of bits we
store and the error

6.46

Extensions (optional)

< Can we use the same trick to answer queries How many 1’s in the
last k? where k < N?

A: Find earliest bucket B that at overlaps with k.
Number of 1s is the sum of sizes of more recent buckets + %>
size of B

1001010110001011

10101010101011

0

1010101010111)0

1010101

110101

000

k

101

1

H0/LD

-
<

% Can we handle the case where the stream is not bits, but
integers, and we want the sum of the last k elements?

6.47

v

Extensions (optional)

< Stream of positive integers
<+ We want the sum of the last k elements
Amazon: Avg. price of last k sales
< Solution:
(1) If you know all have at most m bits
Treat m bits of each integer as a separate stream
Use DGIM to count 1s in each integer

The sum is = Y7 ¢; 2! c; ...estimated count for the i-th bit

(2) Use buckets to keep partial sums
Sum of elements in size b bucket is at most 2P

Idea: Sum in each
bucket is at most
2P (unless bucket
has only 1 integer)
Bucket sizes:

16

[©]y

257138467913765357133].[

257138467913765(357 13 3|1
-

257138467913765[357 1]33][12

257138467913 765|357 1|3 3|12

6.48

||\>
[©]
[Q)

N |
[]
%
o]

[N
@]
[w0]
(N |
1]

References

< Chapter 4, Mining of Massive Datasets.

6.49

End of Chapter 6.1

