COMP9313: Big Data Management

Lecturer: Xin Cao Course web site: http://www.cse.unsw.edu.au/~cs9313/

Chapter 6.1: Mining Data Streams

Data Streams

- In many data mining situations, we do not know the entire data set in advance
- Stream Management is important when the input rate is controlled externally:
 - Google queries
 - > Twitter or Facebook status updates
- We can think of the data as infinite and non-stationary (the distribution changes over time)

Characteristics of Data Streams

- Traditional DBMS: data stored in *finite, persistent data sets*
- Data Streams: distributed, continuous, unbounded, rapid, time varying, noisy, . . .

Characteristics

- > Huge volumes of continuous data, possibly infinite
- > Fast changing and requires fast, real-time response
- Random access is expensive—single scan algorithm (can only have one look)
- > Store only the summary of the data seen thus far

Massive Data Streams

- Data is continuously growing faster than our ability to store or index it
- There are 3 Billion Telephone Calls in US each day,
 30 Billion emails daily, 1 Billion SMS, IMs
- Scientific data: NASA's observation satellites generate billions of readings each per day
- IP Network Traffic: up to 1 Billion packets per hour per router. Each ISP has many (hundreds) routers!

*****

The Stream Model

- Input elements enter at a rapid rate, at one or more input ports (i.e., streams)
 - > We call elements of the stream tuples
- The system cannot store the entire stream accessibly
- Q: How do you make critical calculations about the stream using a limited amount of memory?

Database Management System (DBMS) Data Processing

General Data Stream Management System (DSMS) Processing Model

DBMS vs. DSMS #1

DBMS vs. DSMS #2

Traditional DBMS:

- stored sets of relatively static records with no pre-defined notion of time
- good for applications that require persistent data storage and complex querying

DSMS:

- support on-line analysis of rapidly changing data streams
- data stream: real-time, continuous, ordered (implicitly by arrival time or explicitly by timestamp) sequence of items, too large to store entirely, no ending
- continuous queries

DBMS vs. DSMS #3

DBMS

- Persistent relations (relatively static, stored)
- One-time queries
- Random access
- "Unbounded" disk store
- Only current state matters
- No real-time services
- Relatively low update rate
- Data at any granularity
- Assume precise data
- Access plan determined by query processor, physical DB design

DSMS

- Transient streams (on-line analysis)
- Continuous queries (CQs)
- Sequential access
- Bounded main memory
- Historical data is important
- Real-time requirements
- Possibly multi-GB arrival rate
- Data at fine granularity
- Data stale/imprecise
- Unpredictable/variable data arrival and characteristics

Problems on Data Streams

- Types of queries one wants on answer on a data stream: (we'll learn these today)
 - Sampling data from a stream
 - Construct a random sample
 - > Queries over sliding windows
 - > Number of items of type x in the last k elements of the stream
 - > Filtering a data stream
 - Select elements with property x from the stream
 - Counting distinct elements
 - Number of distinct elements in the last k elements of the stream
 - > Finding frequent elements
 - >

Applications

- Mining query streams
 - Google wants to know what queries are more frequent today than yesterday
- Mining click streams
 - Yahoo wants to know which of its pages are getting an unusual number of hits in the past hour
- Mining social network news feeds
 - > E.g., look for trending topics on Twitter, Facebook
- Sensor Networks
 - > Many sensors feeding into a central controller
- Telephone call records
 - Data feeds into customer bills as well as settlements between telephone companies
- IP packets monitored at a switch
 - Gather information for optimal routing

Example: IP Network Data

- Networks are sources of massive data: the metadata per hour per IP router is gigabytes
- Fundamental problem of data stream analysis:
 - > Too much information to store or transmit
- So process data as it arrives
 - > One pass, small space: the data stream approach
- Approximate answers to many questions are OK, if there are guarantees of result quality

Part 1: Sampling Data Streams

Sampling from a Data Stream

Since we can not store the entire stream, one obvious approach is to store a sample

- Two different problems:
 - > (1) Sample a fixed proportion of elements in the stream (say 1 in 10)
 - As the stream grows the sample also gets bigger
 - (2) Maintain a random sample of fixed size over a potentially infinite stream
 - As the stream grows, the sample is of fixed size
 - At any "time" *t* we would like a random sample of *s* elements
 - What is the property of the sample we want to maintain?
 For all time steps *t*, each of *t* elements seen so far has equal probability of being sampled

Sampling a Fixed Proportion

- Problem 1: Sampling fixed proportion
- Scenario: Search engine query stream
 - Stream of tuples: (user, query, time)
 - Answer questions such as: How often did a user run the same query in a single days
 - Have space to store 1/10th of query stream
- Naïve solution:
 - Generate a random integer in [0..9] for each query
 - > Store the query if the integer is **0**, otherwise discard

Problem with Naïve Approach

- Simple question: What fraction of queries by an average search engine user are duplicates?
 - Suppose each user issues x queries once and d queries twice (total of x+2d queries)
 - Correct answer: d/(x+d)
 - Proposed solution: We keep 10% of the queries
 - Sample will contain x/10 of the singleton queries and 2d/10 of the duplicate queries at least once
 - But only *d*/100 pairs of duplicates
 - $d/100 = 1/10 \cdot 1/10 \cdot d$
 - Of d "duplicates" 18d/100 appear exactly once
 - $18d/100 = ((1/10 \cdot 9/10) + (9/10 \cdot 1/10)) \cdot d$

> So the sample-based answer is
$$\frac{\frac{d}{100}}{\frac{x}{10} + \frac{d}{100} + \frac{18d}{100}} = \frac{d}{10x + 19d} \neq d/(x+d)$$

Solution: Sample Users

Solution:

- Pick 1/10th of users and take all their searches in the sample
- Use a hash function that hashes the username or user id uniformly into 10 buckets
 - > We hash each username to one of ten buckets, 0 through 9
 - If the user hashes to bucket 0, then accept this search query for the sample, and if not, then not.

Generalized Problem and Solution

- Problem: Give a data stream, take a sample of fraction a/b.
- Stream of tuples with keys:
 - > Key is some subset of each tuple's components
 - e.g., tuple is (user, search, time); key is user
 - > Choice of key depends on application
- To get a sample of a/b fraction of the stream:
 - Hash each tuple's key uniformly into b buckets
 - > Pick the tuple if its hash value is at most **a**

How to generate a 30% sample?

Hash into b=10 buckets, take the tuple if it hashes to one of the first 3 buckets

Sample Operator in Spark

- sample(withReplacement, fraction, seed)
 - Return a sampled subset of this RDD.
 - withReplacement: can elements be sampled multiple times
 - fraction: expected size of the sample as a fraction of this RDD's size without replacement
 - This is not guaranteed to provide exactly the fraction specified of the total count of the given
 - > seed: seed for the random number generator

```
scala> val rdd = sc.parallelize(1 to 100)
rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[90] at parallelize at <console>:31
scala> var sample1 = rdd.sample(true, 0.4, 2).collect
sample1: Array[Int] = Array(5, 5, 15, 19, 26, 27, 29, 38, 40, 45, 48, 48, 49, 50, 52, 54, 57, 58, 58, 59, 61, 67, 68, 68, 71, 73, 78, 82, 83, 83, 85, 88, 89, 89, 92, 95, 99)
scala> sample1.size
res7: Int = 37
scala> var sample2 = rdd.sample(false, 0.4, 2).collect
sample2: Array[Int] = Array(4, 5, 6, 7, 15, 21, 23, 26, 27, 36, 41, 42, 43, 44, 49, 50, 51, 52, 54, 61, 62, 66, 68, 77, 82, 86, 91, 93, 96)
scala> sample2.size
res8: Int = 29
```

Maintaining a Fixed-size Sample

- Problem 2: Fixed-size sample
- Suppose we need to maintain a random sample S of size exactly s tuples
 - > E.g., main memory size constraint
- Why? Don't know length of stream in advance
- Suppose at time n we have seen n items
 - > Each item is in the sample S with equal prob. s/n

How to think about the problem: say s = 2 Stream: a x c y z k q d e g... Note that the same item is treated as different tuples at different timestamps

At n= 5, each of the first 5 tuples is included in the sample S with equal prob. At n= 7, each of the first 7 tuples is included in the sample S with equal prob. Impractical solution would be to store all the *n* tuples seen so far and out of them pick *s* at random

Solution: Fixed Size Sample

Algorithm (a.k.a. Reservoir Sampling)

- Store all the first s elements of the stream to S
- Suppose we have seen *n-1* elements, and now the *nth* element arrives (*n* > s)
 - With probability *s/n*, keep the *nth* element, else discard it
 - If we picked the *nth* element, then it replaces one of the *s* elements in the sample *S*, picked uniformly at random
- Claim: This algorithm maintains a sample S with the desired property:
 - After *n* elements, the sample contains each element seen so far with probability *s/n*

Proof: By Induction

We prove this by induction:

- Assume that after *n* elements, the sample contains each element seen so far with probability *s/n*
- We need to show that after seeing element *n+1* the sample maintains the property
 - Sample contains each element seen so far with probability s/(n+1)
- Base case:
 - > After we see **n=s** elements the sample **S** has the desired property
 - Each out of n=s elements is in the sample with probability s/s
 = 1

Proof: By Induction

- Inductive hypothesis: After *n* elements, the sample S contains each element seen so far with prob. *s/n*
- Now element n+1 arrives
- Inductive step: For elements already in S, probability that the algorithm keeps it in S is:

- So, at time *n*, tuples in S were there with prob. s/n
- ♦ Time $n \rightarrow n+1$, tuple stayed in **S** with prob. n/(n+1)
- So prob. tuple is in **S** at time $n+1 = \frac{s}{n} \cdot \frac{n}{n+1} = \frac{s}{n+1}$

takeSample Operator in Spark

- takeSample(withReplacement, num, seed=None)
 - Return a fixed-size sampled subset of this RDD.
 - withReplacement: can elements be sampled multiple times
 - num: sample size
 - This method should only be used if the resulting array is expected to be small, as all the data is loaded into the driver's memory.

```
scala> val rdd = sc.parallelize(1 to 100)
rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[95] at parallel
ize at <console>:31
scala> var sample1 = rdd.takeSample(true, 20, 1)
sample1: Array[Int] = Array(67, 72, 29, 2, 37, 86, 16, 42, 68, 100, 46, 4,
83, 67, 51, 69, 92, 24, 97, 8)
scala> sample1.size
res10: Int = 20
```

Part 2: Querying Data Streams

Sliding Windows

- A useful model of stream processing is that queries are about a *window* of length *N* – the *N* most recent elements received
- Interesting case: N is so large that the data cannot be stored in memory, or even on disk
 - > Or, there are so many streams that windows for all cannot be stored
- Amazon example:
 - For every product X we keep 0/1 stream of whether that product was sold in the *n*-th transaction
 - We want answer queries, how many times have we sold X in the last k sales

Sliding Window: 1 Stream

Sliding window on a single stream:

N = 7

Counting Bits (1)

Problem:

- Given a stream of 0s and 1s
- Be prepared to answer queries of the form:
 How many 1s are in the last k bits? where k ≤ N
- Obvious solution:
 - Store the most recent N bits
 - When new bit comes in, discard the **N+1**st bit

Counting Bits (2)

- You can not get an exact answer without storing the entire window
- Real Problem:
 What if we cannot afford to store N bits?
 - > **E.g.**, we're processing 1 billion streams and N = 1 billion

But we are happy with an approximate answer

An attempt: Simple solution

- Q: How many 1s are in the last **N** bits?
- A simple solution that does not really solve our problem: Uniformity Assumption

- Maintain 2 counters:
 - > S: number of 1s from the beginning of the stream
 - **Z**: number of 0s from the beginning of the stream
- How many 1s are in the last **N** bits? $N \cdot \frac{S}{S+Z}$
- But, what if stream is non-uniform?
 - What if distribution changes over time?

The Datar-Gionis-Indyk-Motwani (DGIM) Algorithm

- Maintaining Stream Statistics over Sliding Windows (SODA'02)
- DGIM solution that does not assume uniformity
- We store $O(\log^2 N)$ bits per stream

> If $N = 2^{16} (64 \text{KB})$, log (log N) = log (16) = 4

- Solution gives approximate answer, never off by more than 50%
 - Error factor can be reduced to any fraction > 0, with more complicated algorithm and proportionally more stored bits

Idea: Exponential Windows

- Solution that doesn't (quite) work:
 - Summarize exponentially increasing regions of the stream, looking backward
 - Drop small regions if they begin at the same point as a larger region

We can reconstruct the count of the last **N** bits, except we are not sure how many of the last **6 1s** are included in the **N**

What's Good?

- Stores only $O(\log^2 N)$ bits
 - > $O(\log N)$ counts of $\log_2 N$ bits each
- Easy update as more bits enter
- Error in count no greater than the number of 1s in the "unknown" area

What's Not So Good?

- As long as the **1s** are fairly evenly distributed, the error due to the unknown region is small **no more than 50%**
- But it could be that all the 1s are in the unknown area at the end
- In that case, the error is unbounded!
 - Because that the number of 1's in the known regions could be 0!

Fixup: DGIM Algorithm

- Idea: Instead of summarizing fixed-length blocks, summarize blocks with specific number of 1s:
 - > Let the block **sizes** (number of **1s**) increase exponentially
- When there are few 1s in the window, block sizes stay small, so errors are small

DGIM: Timestamps

- Each bit in the stream has a timestamp, starting from 1, 2, ...
- Record timestamps modulo *N* (the window size), so we can represent any relevant timestamp in *O*(log₂*N*) bits
 - E.g., given the windows size 40 (*N*), timestamp 123 will be recorded as 3, and thus the encoding is on 3 rather than 123

DGIM: Buckets

- A bucket in the DGIM method is a record consisting of:
 - (A) The timestamp of its end [O(log N) bits]
 - (B) The number of 1s between its beginning and end [O(loglog N) bits]
- Constraint on buckets:
 - Number of 1s must be a power of 2
 - That explains the O(loglog N) in (B) above

Representing a Stream by Buckets

- The right end of a bucket is always a position with a 1
- Every position with a 1 is in some bucket
- Either one or two buckets with the same power-of-2 number of 1s
- Buckets do not overlap in timestamps
- Buckets are sorted by size
 - > Earlier buckets are not smaller than later buckets
- Buckets disappear when their end-time is > N time units in the past

Example: Bucketized Stream

- Three properties of buckets that are maintained:
 - > Either one or two buckets with the same power-of-2 number of 1s
 - Buckets do not overlap in timestamps
 - Buckets are sorted by size

Updating Buckets

- When a new bit comes in, drop the last (oldest) bucket if its end-time is prior to *N* time units before the current time
- 2 cases: Current bit is 0 or 1
- If the current bit is 0: no other changes are needed
- If the current bit is 1:
 - > (1) Create a new bucket of size 1, for just this bit
 - End timestamp = current time
 - (2) If there are now three buckets of size 1, combine the oldest two into a bucket of size 2
 - (3) If there are now three buckets of size 2, combine the oldest two into a bucket of size 4
 - (4) And so on …

Example: Updating Buckets

Current state of the stream:

Bit of value 1 arrives

Two white buckets get merged into a yellow bucket

Next bit 1 arrives, new orange white is created, then 0 comes, then 1:

Buckets get merged...

State of the buckets after merging

How to Query?

To estimate the number of 1s in the most recent N bits:

- Sum the sizes of all buckets but the last
 - (note "size" means the number of 1s in the bucket)
- > Add half the size of the last bucket
- Remember: We do not know how many 1s of the last bucket are still within the wanted window
- Example:

Error Bound: Proof

Why is error 50%? Let's prove it!

- Suppose the last bucket has size 2^r
- Then by assuming 2^{r-1} (i.e., half) of its 1s are still within the window, we make an error of at most 2^{r-1}
- Since there is at least one bucket of each of the sizes less than 2^r, the true sum is at least
 1 + 2 + 4 + ... + 2^{r-1} = 2^r 1
- Thus, error at most 50%

Further Reducing the Error

- Instead of maintaining 1 or 2 of each size bucket, we allow either r-1 or r buckets (r > 2)
 - Except for the largest size buckets; we can have any number between 1 and r of those
- Error is at most O(1/r)

> WHY?

 By picking *r* appropriately, we can tradeoff between number of bits we store and the error

Extensions (optional)

- Can we use the same trick to answer queries How many 1's in the last k? where k < N?</p>
 - A: Find earliest bucket B that at overlaps with k. Number of 1s is the sum of sizes of more recent buckets + ½ size of B

Can we handle the case where the stream is not bits, but integers, and we want the sum of the last k elements?

Extensions (optional)

- Stream of positive integers
- **We want the sum of the last** *k* **elements**
 - > Amazon: Avg. price of last k sales
- Solution:
 - (1) If you know all have at most m bits
 - Treat *m* bits of each integer as a separate stream
 - Use DGIM to count 1s in each integer
 - The sum is $= \sum_{i=0}^{m-1} c_i 2^i$ c_i ... estimated count for the i-th bit
 - (2) Use buckets to keep partial sums

Sum of elements in size b bucket is at most 2^b

 2
 5
 7
 1
 3
 8
 4
 6
 7
 9
 1
 3
 7
 6
 5
 3
 5
 7
 1
 3
 1
 2
 2
 6

 2
 5
 7
 1
 3
 3
 1
 2
 2
 6

 2
 5
 7
 1
 3
 8
 4
 6
 7
 9
 1
 3
 7
 6
 5
 3
 5
 7
 1
 3
 1
 2
 2
 6
 3

 2
 5
 7
 1
 3
 8
 4
 6
 7
 9
 1
 3
 7
 6
 5
 3
 5
 7
 1
 3
 1
 2
 2
 6
 3
 2
 4

 2
 5
 7
 1
 3
 8
 4
 6
 7
 9
 1
 3
 7
 6
 5
 3
 5
 7
 1
 3
 1
 2
 2
 6
 3
 2
 4
 4
 4

Idea: Sum in each bucket is at most 2^b (unless bucket has only 1 integer) Bucket sizes:

References

Chapter 4, Mining of Massive Datasets.

End of Chapter 6.1