
COMP9313: Big Data Management

Lecturer: Xin Cao
Course web site: http://www.cse.unsw.edu.au/~cs9313/

6.2

Chapter 6.2: Mining Data Streams II

Part 3: Filtering Data Streams

6.4

Filtering Data Streams

❖ Each element of data stream is a tuple

❖ Given a list of keys S

❖ Determine which tuples of stream are in S

❖ Obvious solution: Hash table

➢ But suppose we do not have enough memory to store all of S in

a hash table

 E.g., we might be processing millions of filters on the same

stream

6.5

Applications

❖ Example: Email spam filtering

➢ We know 1 billion “good” email addresses

➢ If an email comes from one of these, it is NOT spam

❖ Publish-subscribe systems

➢ You are collecting lots of messages (news articles)

➢ People express interest in certain sets of keywords

➢ Determine whether each message matches user’s interest

6.6

First Cut Solution (1)

❖ Given a set of keys S that we want to filter

❖ Create a bit array B of n bits, initially all 0s

❖ Choose a hash function h with range [0,n)

❖ Hash each member of s S to one of n buckets, and set that bit to 1,

i.e., B[h(s)]=1

❖ Hash each element a of the stream and output only those that hash to

bit that was set to 1

➢ Output a if B[h(a)] == 1

6.7

First Cut Solution (2)

❖ Creates false positives but no false negatives

➢ If the item is in S we surely output it, if not we may still output it

Item

0010001011000

Output the item since it may be in S.

Item hashes to a bucket that at least

one of the items in S hashed to.

Hash

func h

Drop the item.

It hashes to a bucket set

to 0 so it is surely not in S.

Bit array B

6.8

First Cut Solution (3)

❖ |S| = 1 billion email addresses

|B|= 1GB = 8 billion bits

❖ If the email address is in S, then it surely hashes to a bucket that has

the big set to 1, so it always gets through (no false negatives)

➢ False negative: a result indicates that a condition failed, while it

actually was successful

❖ Approximately 1/8 of the bits are set to 1, so about 1/8th of the

addresses not in S get through to the output (false positives)

➢ False positive: a result that indicates a given condition has been

fulfilled, when it actually has not been fulfilled

➢ Actually, less than 1/8th, because more than one address might

hash to the same bit

➢ Since the majority of emails are spam, eliminating 7/8th of the

spam is a significant benefit

6.9

Analysis: Throwing Darts (1)

❖ More accurate analysis for the number of false positives

❖ Consider: If we throw m darts into n equally likely targets, what is

the probability that a target gets at least one dart?

❖ In our case:

➢ Targets = bits/buckets

➢ Darts = hash values of items

6.10

Analysis: Throwing Darts (2)

❖ We have m darts, n targets

❖ What is the probability that a target gets at least one dart?

(1 – 1/n)

Probability some
target X not hit

by a dart

m

1 -

Probability at
least one dart
hits target X

n(/ n)

Equivalent
Equals 1/e
as n →∞

1 – e–m/n

6.11

Analysis: Throwing Darts (3)

❖ Fraction of 1s in the array B

= probability of false positive = 1 – e-m/n

❖ Example: 109 darts, 8∙109 targets

➢ Fraction of 1s in B = 1 – e-1/8 = 0.1175

 Compare with our earlier estimate: 1/8 = 0.125

6.12

Bloom Filter

❖ Consider: |S| = m, |B| = n

❖ Use k independent hash functions h1 ,…, hk

❖ Initialization:

➢ Set B to all 0s

➢ Hash each element s S using each hash function hi, set B[hi(s)]

= 1 (for each i = 1,.., k)

❖ Run-time:

➢ When a stream element with key x arrives

 If B[hi(x)] = 1 for all i = 1,..., k then declare that x is in S

– That is, x hashes to a bucket set to 1 for every hash

function hi(x)

 Otherwise discard the element x

6.13

Bloom Filter

Start with an n bit array, filled with 0s.

Hash each item xj in S for k times. If Hi(xj) = a, set B[a] = 1.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0B

0 1 0 0 1 0 1 0 0 1 1 1 0 1 1 0B

To check if y is in S, check B at Hi(y). All k values must be 1.

0 1 0 0 1 0 1 0 0 1 1 1 0 1 1 0B

0 1 0 0 1 0 1 0 0 1 1 1 0 1 1 0B

Possible to have a false positive; all k values are 1, but y is not in S.

6.14

Bloom Filter Hashing

01000 10100 00010

x

h1(x) h2(x) hk(x)

V0 Vn-1

h3(x)

6.15

Bloom Errors

01000 10100 00010

h1(x) h2(x) hk(x)

V0 Vn-1

h3(x)

a b c d

x didn’t appear, yet its bits are already set

6.16

Bloom Filter Example

❖ Consider a Bloom filter of size m=10 and number of hash functions

k=3. Let H(x) denote the result of the three hash functions.

❖ The 10-bit array is initialized as below

❖ Insert x0 with H(x0） = {1， 4， 9}

❖ Insert x1 with H(x1) = {4, 5, 8}

❖ Query y0 with H(y0) = {0, 4, 8} => ???

❖ Query y1 with H(y1) = {1, 5, 8} => ???

❖ Another Example: https://llimllib.github.io/bloomfilter-tutorial/

0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9

0 1 0 0 1 0 0 0 0 1

0 1 2 3 4 5 6 7 8 9

0 1 0 0 1 1 0 0 1 1

False positive!

https://llimllib.github.io/bloomfilter-tutorial/

6.17

Bloom Filter – Analysis

❖ What fraction of the bit vector B are 1s?

➢ Throwing k∙m darts at n targets

➢ So fraction of 1s is (1 – e-km/n)

❖ But we have k independent hash functions and we only let the

element x through if all k hash element x to a bucket of value 1

❖ So, false positive probability = (1 – e-km/n)k

6.18

Bloom Filter – Analysis (2)

❖ m = 1 billion, n = 8 billion

➢ k = 1: (1 – e-1/8) = 0.1175

➢ k = 2: (1 – e-1/4)2 = 0.0493

❖ What happens as we

keep increasing k?

❖ “Optimal” value of k: n/m ln(2)

➢ In our case: Optimal k = 8 ln(2) = 5.54 ≈ 6

 Error at k = 6: (1 – e-6/8)6 = 0.02158

0 2 4 6 8 10 12 14 16 18 20
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Number of hash functions, k

F
a
ls

e
 p

o
s
it

iv
e
 p

ro
b

.

6.19

Bloom Filter: Wrap-up

❖ Bloom filters guarantee no false negatives, and use limited memory

➢ Great for pre-processing before more

expensive checks

❖ Suitable for hardware implementation

➢ Hash function computations can be parallelized

❖ Is it better to have 1 big B or k small Bs?

➢ It is the same: (1 – e-km/n)k vs. (1 – e-m/(n/k))k

➢ But keeping 1 big B is simpler

6.20

Handling Deletions

❖ Bloom filters can handle insertions, but not deletions.

❖ If deleting xi means resetting 1s to 0s, then deleting xi will “delete” xj.

❖ Can Bloom filters handle deletions?

➢ Use Counting Bloom Filters to track insertions/deletions

0 1 0 0 1 0 1 0 0 1 1 1 0 1 1 0B

xi xj

6.21

Counting Bloom Filters

Start with an n bit array, filled with 0s.

Hash each item xj in S for k times. If Hi(xj) = a, add 1 to B[a].

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0B

0 3 0 0 1 0 2 0 0 3 2 1 0 2 1 0B

To delete xj decrement the corresponding counters.

0 2 0 0 0 0 2 0 0 3 2 1 0 1 1 0B

Can obtain a corresponding Bloom filter by reducing to 0/1.

0 1 0 0 0 0 1 0 0 1 1 1 0 1 1 0B

Part 4: Finding Frequent Elements

(Majority and Heavy Hitters)

6.23

The Majority Problem

❖ Given a stream of elements, find the majority if there is one

➢ A majority element in the data stream (assume that we have

received n elements already) is an element that appears more

than n/2 times

❖ A A B C D B A A B B A A A A A A C C C D A B A A A

➢ Answer: A

❖ It is trivial if we have enough memory

➢ For each received element, keep a counter for it. Once receiving it

again, increase the counter

➢ Can use the binary search tree/hashmap to store the elements

➢ O(n log n)/O(n) complexity and O(n) space

❖ What if we only have limited memory?

6.24

Boyer-Moore Voting Algorithm

❖ This algorithm takes O(n) time and O(1) space

❖ Basic idea of the algorithm is if we cancel out each occurrence of an

element e with all the other elements that are different from e, then e

will exist till the end. Then, we can check if it is indeed the majority

element.

❖ Thus, the algorithm contains two phases:

➢ First pass: find the possible candidate (the element that has the

largest frequency in the stream)

➢ Second pass: compute its frequency and verify that it is > n/2

6.25

Boyer-Moore Voting Algorithm

❖ Phase 1:

➢ Loop through each element and maintains a count of majority

element, and a majority index, maj_index

➢ If the next element is same then increment the count, if the next

element is not same then decrement the count.

➢ if the count reaches 0 then changes the maj_index to the current

element and set the count again to 1.

6.26

Boyer-Moore Voting Algorithm

❖ Example: given a stream as A[] = 2, 2, 3, 5, 2, 2, 6

➢ maj_index = 0, count = 1 –> candidate 2?

➢ Same as a[maj_index] => count = 2

➢ Different from a[maj_index] => count = 1

➢ Different from a[maj_index] => count = 0

➢ Since count = 0, change candidate for majority element to 5 =>

maj_index = 3, count = 1

➢ Different from a[maj_index] => count = 0

➢ Since count = 0, change candidate for majority element to 2 =>

maj_index = 4

➢ Same as a[maj_index] => count = 2

➢ Different from a[maj_index] => count = 1

➢ Finally, candidate for majority element is 2

6.27

Boyer-Moore Voting Algorithm

❖ Phase 2: Just compute the count of the element in the stream for

verification

❖ We can see that this algorithm still requires two passes of the stream,

which is actually not possible in most streaming applications.

❖ If only one pass and O(1) space allowed, not possible to get the

majority element!

Input is an array: https://leetcode.com/problems/majority-element/

https://leetcode.com/problems/majority-element/

6.28

Heavy Hitters

❖ A more general problem: find all elements with counts > n/k (k>=2)

➢ There can be at most k-1 such values; and there might be none

➢ Trivial if we have enough storage

❖ Applications

➢ Computing popular products. For example, A could be all of the

page views of products on amazon.com yesterday. The heavy

hitters are then the most frequently viewed products

➢ Computing frequent search queries. For example, A could be all of

the searches on Google yesterday. The heavy hitters are then

searches made most often

➢ Identifying heavy TCP flows. Here, A is a list of data packets

passing through a network switch, each annotated with a source-

destination pair of IP addresses. The heavy hitters are then the

flows that are sending the most traffic. This is useful for, among

other things, identifying denial-of-service attacks

6.29

Approximate Heavy Hitters

❖ There is no exact algorithm that solves the Heavy Hitters problems in

one pass while using a sublinear amount of auxiliary space

❖ Relaxation, the ε-approximate heavy hitters problem:

➢ If an element has count > n/k, it must be reported, together with its

estimated count with (absolute) error < εn

➢ If an element has count < (1/k − ε) n, it cannot be reported

➢ For elements in between, don’t care

❖ In fact, we will estimate all counts with at most εn error

6.30

Misra-Gries Algorithm

❖ Keep k-1 different candidates in hand (thus with space O(k）)

❖ For each element in stream:

➢ If item is monitored, increase its counter

➢ Else, if < k-1 items monitored, add new element with count 1

➢ Else, decrease all counts by 1, and delete element with count 0

❖ Each decrease can be charged against k arrivals of different items, so

no item with frequency N/k is missed

❖ But false positive (elements with count smaller than n/k) may appear

in the result

6.31

Misra-Gries Algorithm

❖ [1,1,2,3,4,5,1,1,1,5,3,3,1,1,2] with k=3, we want to find element that

occurred more than 15/3 = 5 times.

6.32

Lossy Counting

❖ Step 1: Divide the incoming data

stream into windows, and each

window contains 1/ε elements

❖ Step 2: Increment the frequency

count of each item according to

the new window values. After

each window, decrement all

counters by 1. Drop elements with

counter 0.

❖ Step 3: Repeat – Update counters

and after each window, decrement

all counters by 1

6.33

Lossy Counting

6.34

The Space-Saving Algorithm

❖ Keep k = 1/ε item names and counts, initially zero

❖ On seeing new item:

➢ If it has a counter, increment counter

➢ If not, replace item with least count, increment count

❖ Analysis:

➢ Smallest counter value, min, is at most εn

➢ True count of an uncounted item is between 0 and min

➢ Any item x whose true count > εn is stored

❖ So: Find all items with count > εn, error in counts ≤ εn

http://romania.a

mazon.com/tech

on/presentations

/DataStreamsAl

gorithms_Florin

Manolache.pdf

http://romania.amazon.com/techon/presentations/DataStreamsAlgorithms_FlorinManolache.pdf

6.35

Count-Min Sketch

❖ In general, model input stream as a vector x of dimension U

➢ x[i] is frequency of element I

❖ The count-min sketch has two parameters, the number of buckets w

and the number of hash functions d

❖ Creates a small summary as an array of w × d in size

❖ Use d hash function to map vector entries to [1..w]

6.36

Count-Min Sketch

❖ The count-min-sketch supports two operations: Inc(x) and Count(x)

❖ The operation Count(x) is supposed to return the frequency count of x,

meaning the number of times that Inc(x) has been invoked in the past

❖ The code for Inc(x) is simply:

➢ for i = 1, 2, . . . , d: increment CMS[i][hi(x)]

❖ The code for Count(x) is simply:

➢ return 𝑚𝑖𝑛𝑖=1
𝑑 CMS[i][hi(x)]

https://www.geeksforgeeks.org/count-min-sketch-in-java-with-examples/

https://www.geeksforgeeks.org/count-min-sketch-in-java-with-examples/

Part 5: Counting Data Streams (FM-Sketch)

6.38

Counting Distinct Elements

❖ Problem:

➢ Data stream consists of a universe of elements chosen from a set

of size N

➢ Maintain a count of the number of distinct elements seen so far

❖ Example:

❖ Obvious approach: Maintain the set of elements seen so far

➢ That is, keep a hash table of all the distinct elements seen so far

➢ Not practical if we only have fixed-size storage

Data stream: 3 2 5 3 2 1 7 5 1 2 3 7

Number of distinct values: 5

6.39

Applications

❖ How many different words are found among the Web pages being

crawled at a site?

➢ Unusually low or high numbers could indicate artificial pages

(spam?)

❖ How many different Web pages does each customer request in a

week?

❖ How many distinct products have we sold in the last week?

6.40

Using Small Storage

❖ Real problem: What if we do not have space to maintain the set of

elements seen so far?

❖ Estimate the count in an unbiased way

❖ Accept that the count may have a little error, but limit the probability

that the error is large

6.41

Sketches

❖ Sampling does not work!

➢ If a large fraction of items aren’t sampled, don’t know if they are all

same or all different

❖ Sketch: a technique takes advantage that the algorithm can “see” all

the data even if it can’t “remember” it all

❖ Essentially, sketch is a linear transform of the input

➢ Model stream as defining a vector, sketch is result of multiplying

stream vector by an (implicit) matrix

linear projection

6.42

Flajolet-Martin Sketch

❖ Probabilistic Counting Algorithms for Data Base Applications. 1985.

❖ Pick a hash function h that maps each of the N elements to at least

log2 N bits

❖ For each stream element a, let r(a) be the number of trailing 0s in h(a)

➢ r(a) = position of first 1 counting from the right

 E.g., say h(a) = 12, then 12 is 1100 in binary, so r(a) = 2

❖ Record R = the maximum r(a) seen

➢ R = maxa r(a), over all the items a seen so far

❖ Estimated number of distinct elements = 2R

6.43

Why It Works: Intuition

❖ Very very rough and heuristic intuition why Flajolet-Martin works:

➢ h(a) hashes a with equal prob. to any of N values

➢ Then h(a) is a sequence of log2 N bits,

where 2-r fraction of all as have a tail of r zeros

 About 50% of as hash to ***0

 About 25% of as hash to **00

 So, if we saw the longest tail of r=2 (i.e., item hash ending *100)

then we have probably seen about 4 distinct items so far

➢ So, it takes to hash about 2r items before we see one with zero-suffix of

length r

6.44

Why It Works: More formally

❖ Formally, we will show that probability of finding a tail of r zeros:

➢ Goes to 1 if 𝒎 ≫ 𝟐𝒓

➢ Goes to 0 if 𝒎 ≪ 𝟐𝒓

where 𝒎 is the number of distinct elements seen so far in the stream

❖ Thus, 2R will almost always be around m!

6.45

Why It Works: More formally

❖ The probability that a given h(a) ends in at least r zeros is 2-r

➢ h(a) hashes elements uniformly at random

➢ Probability that a random number ends in at least r zeros is 2-r

❖ Then, the probability of NOT seeing a tail of length r among m elements:

𝟏 − 𝟐−𝒓 𝒎

Prob. that given h(a) ends in

fewer than r zeros
Prob. all end in

fewer than r zeros.

6.46

Why It Works: More formally

❖ Note:

❖ Prob. of NOT finding a tail of length r is:

➢ If m << 2r, then prob. tends to 1

 as m/2r→ 0

 So, the probability of finding a tail of length r tends to 0

➢ If m >> 2r, then prob. tends to 0

 as m/2r → 

 So, the probability of finding a tail of length r tends to 1

❖ Thus, 2R will almost always be around m!

rrr mmrmr e
−− −−− −=− 2)2(2)21()21(

1)21(2 =−
−−− rmmr e

0)21(2 =−
−−− rmmr e

6.47

Flajolet-Martin Sketch

❖ Maintain FM Sketch = bitmap array of L = log𝑵 bits

➢ Initialize bitmap to all 0s

➢ For each incoming value a, set FM[r(a)] = 1

❖ If d distinct values, expect d/2 map to FM[1], d/4 to FM[2]…

➢ Use the leftmost 1: R = maxa r(a)

➢ Use the rightmost 0: also an indicator of log(d)

 Estimate d = c2R for scaling constant c ≈ 1.3 (original paper)

➢ Average many copies (different hash functions) improves

accuracy

fringe of 0/1s

around log(d)

0 0 0 00 1

FM BITMAP

0 00 111 1 11111

position ≪ log(d)position ≫ log(d)

1L R

6.48

References

❖ Chapter 4, Mining of Massive Datasets.

❖ Finding Frequent Items in Data Streams

http://archive.dimacs.rutgers.edu/Workshops/WGUnifyingTheory/Slides/cormode.pdf

End of Chapter 6.2

