
COMP9313: Big Data Management

Lecturer: Xin Cao
Course web site: http://www.cse.unsw.edu.au/~cs9313/

3.2

Chapter 3.1: MapReduce III

3.3

Design Pattern 3: Order Inversion

3.4

Computing Relative Frequencies

❖ “Relative” Co-occurrence matrix construction

➢ Similar problem as before, same matrix

➢ Instead of absolute counts, we take into consideration the fact that

some words appear more frequently than others

 Word wi may co-occur frequently with word wj simply because one of

the two is very common

➢ We need to convert absolute counts to relative frequencies f(wj|wi)

 What proportion of the time does wj appear in the context of wi?

❖ Formally, we compute:

➢ N(·, ·) is the number of times a co-occurring word pair is observed

➢ The denominator is called the marginal

3.5

f(wj|wi) : “Stripes”

❖ In the reducer, the counts of all words that co-occur with the

conditioning variable (wi) are available in the associative array

❖ Hence, the sum of all those counts gives the marginal

❖ Then we divide the joint counts by the marginal and we’re done

❖ Problems?

➢ Memory

a → {b1:3, b2 :12, b3 :7, b4 :1, … }

f(b1|a) = 3 / (3 + 12 + 7 + 1 + …)

3.6

f(wj|wi) : “Pairs”

❖ The reducer receives the pair (wi, wj) and the count

❖ From this information alone it is not possible to compute f(wj|wi)

➢ Computing relative frequencies requires marginal counts

➢ But the marginal cannot be computed until you see all counts

((a, b1), {1, 1, 1, …})

No way to compute f(b1|a) because the marginal is unknown

3.7

f(wj|wi) : “Pairs”

❖ Solution 1: Fortunately, as for the mapper, also the reducer can

preserve state across multiple keys

➢ We can buffer in memory all the words that co-occur with wi and

their counts

➢ This is basically building the associative array in the stripes

method

➢ Problems?

a → {b1:3, b2 :12, b3 :7, b4 :1, … }

is now buffered in the reducer side

3.8

f(wj|wi) : “Pairs”

❖ We must define the sort order of the pair !!

➢ In this way, the keys are first sorted by the left word, and then by

the right word (in the pair)

➢ Hence, we could detect if all pairs associated with the word we are

conditioning on (wi) have been seen

➢ At this point, we can use the in-memory buffer, compute the

relative frequencies and emit

If reducers receive pairs not sorted

((a, b1), {1, 1, 1, …})

((c, d1), {1, 1, 1, …})

((a, b2), {1, 1, 1, …})

… …

When can we compute the marginal?

3.9

f(wj|wi) : “Pairs”

❖ We must define an appropriate partitioner

➢ The default partitioner is based on the hash value of the

intermediate key, modulo the number of reducers

➢ For a complex key, the raw byte representation is used to

compute the hash value

 Hence, there is no guarantee that the pair (dog, aardvark) and

(dog,zebra) are sent to the same reducer

➢ What we want is that all pairs with the same left word are sent to

the same reducer

❖ Still suffer from the memory problem!

((a, b1), {1, 1, 1, …}) and ((a, b2), {1, 1, 1, …}) may be

assigned to different reducers!

Default partitioner computed based on the whole key.

3.10

f(wj|wi) : “Pairs”

❖ Better solutions?

❖ The key is to properly sequence data presented to reducers

➢ If it were possible to compute the marginal in the reducer before

processing the join counts, the reducer could simply divide the

joint counts received from mappers by the marginal

➢ The notion of “before” and “after” can be captured in the ordering

of key-value pairs

➢ The programmer can define the sort order of keys so that data

needed earlier is presented to the reducer before data that is

needed later

(a, b1) → 3
(a, b2) → 12
(a, b3) → 7
(a, b4) → 1
…

(a, *) → 32

(a, b1) → 3 / 32
(a, b2) → 12 / 32
(a, b3) → 7 / 32
(a, b4) → 1 / 32
…

Reducer holds this value in memory, rather than the stripe

3.11

f(wj|wi) : “Pairs” – Order Inversion

❖ A better solution based on order inversion

❖ The mapper:

➢ additionally emits a “special” key of the form (wi, ∗)

➢ The value associated to the special key is one, that represents the

contribution of the word pair to the marginal

➢ Using combiners, these partial marginal counts will be aggregated

before being sent to the reducers

❖ The reducer:

➢ We must make sure that the special key-value pairs are

processed before any other key-value pairs where the left word is

wi (define sort order)

➢ We also need to guarantee that all pairs associated with the same

word are sent to the same reducer (use partitioner)

3.12

f(wj|wi) : “Pairs” – Order Inversion

❖ Example:

➢ The reducer finally receives:

➢ The pairs come in order, and thus we can compute the relative

frequency immediately.

3.13

f(wj|wi) : “Pairs” – Order Inversion

❖ Memory requirements:

➢ Minimal, because only the marginal (an integer) needs to be

stored

➢ No buffering of individual co-occurring word

➢ No scalability bottleneck

❖ Key ingredients for order inversion

➢ Emit a special key-value pair to capture the marginal

➢ Control the sort order of the intermediate key, so that the special

key-value pair is processed first

➢ Define a custom partitioner for routing intermediate key-value

pairs

3.14

Order Inversion

❖ Common design pattern

➢ Computing relative frequencies requires marginal counts

➢ But marginal cannot be computed until you see all counts

➢ Buffering is a bad idea!

➢ Trick: getting the marginal counts to arrive at the reducer before

the joint counts

❖ Optimizations

➢ Apply in-memory combining pattern to accumulate marginal

counts

3.15

Synchronization: Pairs vs. Stripes

❖ Approach 1: turn synchronization into an ordering problem

➢ Sort keys into correct order of computation

➢ Partition key space so that each reducer gets the appropriate set
of partial results

➢ Hold state in reducer across multiple key-value pairs to perform
computation

➢ Illustrated by the “pairs” approach

❖ Approach 2: construct data structures that bring partial results

together

➢ Each reducer receives all the data it needs to complete the
computation

➢ Illustrated by the “stripes” approach

3.16

How to Implement Order Inversion

in MapReduce?

3.17

Partitioner in Hadoop Streaming

❖ Hadoop has a library class, KeyFieldBasedPartitioner, that is useful

for many applications. This class allows the Map/Reduce framework to

partition the map outputs based on certain key fields, not the whole

keys.

➢ “-D stream.map.output.field.separator=.” specifies “.” as the field

separator for the map outputs. By default, the separator is ‘\t’

➢ “-D stream.num.map.output.key.fields=4” means the prefix up to

the fourth “.” in a line will be the key and the rest of the line

(excluding the fourth “.”) will be the value.

3.18

Partitioner in Hadoop Streaming

➢ “-D map.output.key.field.separator=.” means the separator for the

key is also “.”

➢ “-D mapreduce.partition.keypartitioner.options=-k1,2” means

MapReduce will partition the map outputs by the first two fields of

the keys

➢ This guarantees that all the key/value pairs with the same first two

fields in the keys will be partitioned into the same reducer.

3.19

Partitioner in Hadoop Streaming

❖ For the relative frequency computation task, you can do like:

hadoop jar $HADOOP_HOME/share/hadoop/tools/lib/hadoop-streaming-*.jar \

-D stream.map.output.field.separator=\\t \

-D stream.num.map.output.key.fields=1 \

-D map.output.key.field.separator=, \

-D mapreduce.partition.keypartitioner.options=-k1,1 \

-D mapreduce.job.reduces=2 \

-input input \

-output output \

-mapper mapper.py \

-reducer reducer.py \

-partitioner org.apache.hadoop.mapred.lib.KeyFieldBasedPartitioner \

-file mapper.py \

-file reducer.py

3.20

Partitioner in MRJob

❖ In your class, configure JOBCONF, like:

➢ You also need to add one line “SORT_VALUES = True” into your

code.

➢ Assume each key is a pair of strings separated by “,” like

“term,102”. Hadoop performs the sorting based on the whole key.

However, the above configure would let Hadoop know that the

partitioning is only based the first field of the key (i.e., “term”).

JOBCONF = {

'mapreduce.map.output.key.field.separator': ',',

'mapreduce.job.reduces':2,

'mapreduce.partition.keycomparator.options':'-k1,1',

'partitioner':'org.apache.hadoop.mapred.lib.KeyFieldBasedPartitioner'

}

3.21

Design Pattern 4: Value-to-key Conversion

3.22

Secondary Sort

❖ MapReduce sorts input to reducers by key

➢ Values may be arbitrarily ordered

❖ What if want to sort value as well?

➢ E.g., k → (v1, r), (v3, r), (v4, r), (v8, r)…

➢ Google's MapReduce implementation provides built-in

functionality

➢ Unfortunately, Hadoop does not support

❖ Secondary Sort: sorting values associated with a key in the reduce

phase, also called “value-to-key conversion”

3.23

Secondary Sort

❖ Sensor data from a scientific experiment: there are m sensors each

taking readings on continuous basis

 (t1, m1, r80521)

 (t1, m2, r14209)

 (t1, m3, r76742)

 …

 (t2, m1, r21823)

 (t2, m2, r66508)

 (t2, m3, r98347)

❖ We wish to reconstruct the activity at each individual sensor over time

❖ In a MapReduce program, a mapper may emit the following pair as

the intermediate result

 m1 -> (t1, r80521)

➢ We need to sort the value according to the timestamp

3.24

Secondary Sort

❖ Solution 1:

➢ Buffer values in memory, then sort

➢ Why is this a bad idea?

❖ Solution 2:

➢ “Value-to-key conversion” design pattern: form composite

intermediate key, (m1, t1)

 The mapper emits (m1, t1) -> r80521

➢ Let execution framework do the sorting

➢ Preserve state across multiple key-value pairs to handle

processing

➢ Anything else we need to do?

 Sensor readings are split across multiple keys. Reducers need

to know when all readings of a sensor have been processed

 All pairs associated with the same sensor are shuffled to the

same reducer (use partitioner)

3.25

How to Implement Secondary Sort

in MapReduce?

3.26

Secondary Sort： Another Example

❖ Consider the temperature data from a scientific experiment. Columns

are year, month, day, and daily temperature, respectively:

❖ We want to output the temperature for every year-month with the

values sorted in ascending order.

3.27

Solutions to the Secondary Sort Problem

❖ Use the Value-to-Key Conversion design pattern:

➢ form a composite intermediate key, (K, V), where V is the

secondary key. Here, K is called a natural key. To inject a value

(i.e., V) into a reducer key, simply create a composite key

 K: year-month

 V： temperature data

❖ Let the MapReduce execution framework do the sorting (rather than

sorting in memory, let the framework sort by using the cluster nodes).

❖ Preserve state across multiple key-value pairs to handle processing.

Write your own partitioner: partition the mapper’s output by the natural

key (year-month).

3.28

Secondary Sorting Keys

3.29

Secondary Sort by Hadoop Streaming

❖ Hadoop has a library class, KeyFieldBasedComparator, that is useful

for secondary sort.

➢ The map output keys of the above Map/Reduce job have four

fields separated by “.”

➢ MapReduce will sort the outputs by the second field of the keys

using the -D mapreduce.partition.keycomparator.options=-k2,2nr

option

 -n specifies that the sorting is numerical sorting

 -r specifies that the result should be reversed

3.30

MapReduce Algorithm Design

❖ Aspects that are not under the control of the designer

➢ Where a mapper or reducer will run

➢ When a mapper or reducer begins or finishes

➢ Which input key-value pairs are processed by a specific mapper

➢ Which intermediate key-value paris are processed by a specific

reducer

❖ Aspects that can be controlled

➢ Construct data structures as keys and values

➢ Execute user-specified initialization and termination code for

mappers and reducers (pre-process and post-process)

➢ Preserve state across multiple input and intermediate keys in

mappers and reducers (in-mapper combining)

➢ Control the sort order of intermediate keys, and therefore the order

in which a reducer will encounter particular keys (order inversion)

➢ Control the partitioning of the key space, and therefore the set of

keys that will be encountered by a particular reducer (partitioner)

3.31

Test and Debug MRJob Locally

❖ To test your mapper, add the --mapper option to your run command:

➢ python job.py --mapper text.txt

❖ You can store the results of your mapper in an output file

➢ python job.py --mapper text.txt > output.txt

❖ Run your code locally, you can observe that the mapper output is not

sorted. Since there is no sorting and shuffling and partitioning phases

in this simulated environment.

❖ Before passing the file storing mapper output to your reducer, we

need to utilize the Linux "sort" command to first sort the mapper output

➢ cat output.txt | sort -k1,1 | python job.py --reducer

❖ You can also run your mapper and pipe the results to your reducer

➢ python job.py --mapper text.txt | sort -k1,1 | python job.py --

reducer

3.32

Test and Debug MRJob on Hadoop

❖ Use MRStep to define a step with mapper only to test your mapper on

Hadoop first, and then include the reducer and run on Hadoop.

❖ Use sys.stderr to log the necessary information of your program

❖ Check the logs to see the error:

➢ After running a job, check the logs at

$HADOOP_HOME/logs/userlogs

➢ In this directory, you can see a folder containing all the information

about your job

➢ Go into this folder and check in each container log (“stderr” in

each container log folder)

3.33

Application: Building Inverted Index

3.34

MapReduce in Real World: Search Engine

❖ Information retrieval (IR)

➢ Focus on textual information (= text/document retrieval)

➢ Other possibilities include image, video, music, …

❖ Boolean Text retrieval

➢ Each document or query is treated as a “bag” of words or terms.

Word sequence is not considered

➢ Query terms are combined logically using the Boolean operators

AND, OR, and NOT.

 E.g., ((data AND mining) AND (NOT text))

➢ Retrieval

 Given a Boolean query, the system retrieves every document

that makes the query logically true.

 Called exact match

➢ The retrieval results are usually quite poor because term

frequency is not considered and results are not ranked

3.35

Boolean Text Retrieval: Inverted Index

❖ The inverted index of a document collection is basically a data

structure that

➢ attaches each distinctive term with a list of all documents that

contains the term.

➢ The documents containing a term are sorted in the list

❖ Thus, in retrieval, it takes constant time to

➢ find the documents that contains a query term.

➢ multiple query terms are also easy handle as we will see soon.

3.36

Boolean Text Retrieval: Inverted Index

3.37

Search Using Inverted Index

❖ Given a query q, search has the following steps:

➢ Step 1 (vocabulary search): find each term/word in q in the

inverted index.

➢ Step 2 (results merging): Merge results to find documents that

contain all or some of the words/terms in q.

➢ Step 3 (Rank score computation): To rank the resulting

documents/pages, using:

 content-based ranking

 link-based ranking

 Not used in Boolean retrieval

3.38

Boolean Query Processing: AND

❖ Consider processing the query: Brutus AND Caesar

➢ Locate Brutus in the Dictionary;

 Retrieve its postings.

➢ Locate Caesar in the Dictionary;

 Retrieve its postings.

➢ “Merge” the two postings:

 Walk through the two postings simultaneously, in time linear in

the total number of postings entries

34

1282 4 8 16 32 64

1 2 3 5 8 13 21

128

34

2 4 8 16 32 64

1 2 3 5 8 13 21

Brutus

Caesar
2 8

If the list lengths are x and y, the merge takes O(x+y) operations.

Crucial: postings sorted by docID.

3.39

MapReduce it?

❖ The indexing problem

➢ Scalability is critical

➢ Must be relatively fast, but need not be real time

➢ Fundamentally a batch operation

➢ Incremental updates may or may not be important

➢ For the web, crawling is a challenge in itself

❖ The retrieval problem

➢ Must have sub-second response time

➢ For the web, only need relatively few results

3.40

MapReduce: Index Construction

❖ Input: documents: (docid, doc), ..

❖ Output: (term, [docid, docid, …])

➢ E.g., (long, [1, 23, 49, 127, …])

 The docid are sorted !! (used in query phase)

➢ docid is an internal document id, e.g., a unique integer. Not an

external document id such as a URL

❖ How to do it in MapReduce?

3.41

MapReduce: Index Construction

❖ A simple approach:

➢ Each Map task is a document parser

 Input: A stream of documents

– (1, long ago …), (2, once upon …)

 Output: A stream of (term, docid) tuples

– (long, 1) (ago, 1) … (once, 2) (upon, 2) …

➢ Reducers convert streams of keys into streams of inverted lists

 Input: (long, [1, 127, 49, 23, …])

 The reducer sorts the values for a key and builds an inverted

list

– Longest inverted list must fit in memory

 Output: (long, [1, 23, 49, 127, …])

❖ Problems?

➢ Inefficient

➢ docids are sorted in reducers

3.42

Ranked Text Retrieval

❖ Order documents by how likely they are to be relevant

➢ Estimate relevance(q, di)

➢ Sort documents by relevance

➢ Display sorted results

❖ User model

➢ Present hits one screen at a time, best results first

➢ At any point, users can decide to stop looking

❖ How do we estimate relevance?

➢ Assume document is relevant if it has a lot of query terms

➢ Replace relevance(q, di) with sim(q, di)

➢ Compute similarity of vector representations

❖ Vector space model/cosine similarity, language models, …

3.43

Term Weighting

❖ Term weights consist of two components

➢ Local: how important is the term in this document?

➢ Global: how important is the term in the collection?

❖ Here’s the intuition:

➢ Terms that appear often in a document should get high weights

➢ Terms that appear in many documents should get low weights

❖ How do we capture this mathematically?

➢ TF: Term frequency (local)

➢ IDF: Inverse document frequency (global)

3.44

TF.IDF Term Weighting

i

jiji
n

N
w logtf ,, =

jiw ,

ji ,tf

N

in

weight assigned to term i in document j

number of occurrence of term i in document j

number of documents in entire collection

number of documents with term i

3.45

Retrieval in a Nutshell

❖ Look up postings lists corresponding to query terms

❖ Traverse postings for each query term

❖ Store partial query-document scores in accumulators

❖ Select top k results to return

3.46

MapReduce: Index Construction

❖ Input: documents: (docid, doc), ..

❖ Output: (t, [(docid, wt), (docid, w), …])

➢ wt represents the term weight of t in docid

➢ E.g., (long, [(1, 0.5), (23, 0.2), (49, 0.3), (127,0.4), …])

 The docid are sorted !! (used in query phase)

❖ How this problem differs from the previous one?

➢ TF computing

 Easy. Can be done within the mapper

➢ IDF computing

 Known only after all documents containing a term t processed

➢ Input and output of map and reduce?

3.47

Inverted Index: TF-IDF

3.48

MapReduce: Index Construction

❖ A simple approach:

➢ Each Map task is a document parser

 Input: A stream of documents

– (1, long ago …), (2, once upon …)

 Output: A stream of (term, [docid, tf]) tuples

– (long, [1,1]) (ago, [1,1]) … (once, [2,1]) (upon, [2,1]) …

➢ Reducers convert streams of keys into streams of inverted lists

 Input: (long, {[1,1], [127,2], [49,1], [23,3] …})

 The reducer sorts the values for a key and builds an inverted

list

– Compute TF and IDF in reducer!

 Output: (long, [(1, 0.5), (23, 0.2), (49, 0.3), (127,0.4), …])

3.49

MapReduce: Index Construction

3.50

MapReduce: Index Construction

❖ Inefficient: terms as keys, postings as values

➢ docids are sorted in reducers

➢ IDF can be computed only after all relevant documents received

➢ Reducers must buffer all postings associated with key (to sort)

 What if we run out of memory to buffer postings?

➢ Improvement?

3.51

The First Improvement

❖ How to make Hadoop sort the docid, instead of doing it in reducers?

❖ Design pattern: value-to-key conversion, secondary sort

❖ Mapper output a stream of ([term, docid], tf) tuples

Remember: you must implement a partitioner on term!

3.52

The Second Improvement

❖ How to avoid buffering all postings associated with key?

We’d like to store the DF at the

front of the postings list

But we don’t know the DF until we’ve

seen all postings!

Sound familiar?

Design patter: Order inversion

3.53

The Second Improvement

❖ Getting the DF

➢ In the mapper:

 Emit “special” key-value pairs to keep track of DF

➢ In the reducer:

 Make sure “special” key-value pairs come first: process them

to determine DF

➢ Remember: proper partitioning!

Emit normal key-value pairs…

Emit “special” key-value pairs to keep track of df…

Doc1: one fish, two fish

3.54

The Second Improvement

First, compute the DF by summing contributions

from all “special” key-value pair…

Write the DF…

Important: properly define sort order to make

sure “special” key-value pairs come first!

3.55

Chained MapReduce Job (MRJob)

❖ To define multiple steps, override steps() to return a list of MRSteps:

3.56

Practices

3.57

Practice： Design MapReduce Algorithms

❖ Counting total enrollments of two specified courses

❖ Input Files: A list of students with their enrolled courses

 Jamie: COMP9313, COMP9318

 Tom: COMP9331, COMP9313

 … …

❖ Mapper selects records and outputs initial counts

➢ Input: Key – student, value – a list of courses

➢ Output: (COMP9313, 1), (COMP9318, 1), …

❖ Reducer accumulates counts

➢ Input: (COMP9313, [1, 1, …]), (COMP9318, [1, 1, …])

➢ Output: (COMP9313, 16), (COMP9318, 35)

3.58

❖ Remove duplicate records

❖ Input: a list of records

2013-11-01 aa

2013-11-02 bb

2013-11-03 cc

2013-11-01 aa

2013-11-03 dd

❖ Mapper

➢ Input (record_id, record)

➢ Output (record, “”)

 E.g., (2013-11-01 aa, “”), (2013-11-02 bb, “”), …

❖ Reducer

➢ Input (record, [“”, “”, “”, …])

 E.g., (2013-11-01 aa, [“”, “”]), (2013-11-02 bb, [“”]), …

➢ Output (record, “”)

Practice： Design MapReduce Algorithms

3.59

❖ Calculate the common friends for each pair of users in Facebook.

Assume the friends are stored in format of Person->[List of Friends],

e.g.: A -> [B C D], B -> [A C D E], C -> [A B D E], D -> [A B C E], E ->

[B C D]. Note that the “friendship” is bi-directional, which means that if

A is in B’s list, B would be in A’s list as well. Your result should be like:

➢ (A B) -> (C D)

➢ (A C) -> (B D)

➢ (A D) -> (B C)

➢ (B C) -> (A D E)

➢ (B D) -> (A C E)

➢ (B E) -> (C D)

➢ (C D) -> (A B E)

➢ (C E) -> (B D)

➢ (D E) -> (B C)

Practice： Design MapReduce Algorithms

3.60

❖ Mapper:

➢ Input(user u, List of Friends [f1, f2, …,])

➢ map(): for each friend fi, emit (<u, fi>, List of Friends [f1, f2, …,])

 Need to generate the pair <u, fi> according to an order! Thus

<u, fi> and <fi, u> will be the same key

❖ Reducer:

➢ Input(user pair, list of friends lists[])

➢ Get the intersection from all friends lists

❖ Example: http://scaryscientist.blogspot.com/2015/04/common-friends-

using-mapreduce.html

Practice： Design MapReduce Algorithms

http://scaryscientist.blogspot.com/2015/04/common-friends-using-mapreduce.html
http://scaryscientist.blogspot.com/2015/04/common-friends-using-mapreduce.html

3.61

❖ Assume that in an online shopping system, a huge log file stores the

information of each transaction. Each line of the log is in format of

“userID\t product\t price\t time”. Your task is to use MapReduce to find

out the top-5 expensive products purchased by each user in 2016

❖ Mapper:

➢ Input(transaction_id, transaction)

➢ initialize an associate array H(UserID, priority queue Q of log

record based on price)

➢ map(): get local top-5 for each user

➢ cleanup(): emit the entries in H

❖ Reducer:

➢ Input(userID, list of queues[])

➢ get top-5 products from the list of queues

Practice： Design MapReduce Algorithms

3.62

Practice： Design MapReduce Algorithms

❖ Reverse graph edge directions & output in node order

❖ Input: adjacency list of graph (3 nodes and 4 edges)

(3, [1, 2]) (1, [3])

(1, [2, 3]) ➔ (2, [1, 3])

 (3, [1])

❖ Note, the node_ids in the output values are also sorted. But Hadoop

only sorts on keys!

❖ Solutions: Secondary sort

3.63

❖ Map

➢ Input: (3, [1, 2]), (1, [2, 3]).

➢ Intermediate: (1, [3]), (2, [3]), (2, [1]), (3, [1]). (reverse direction)

➢ Output: (<1, 3>, [3]), (<2, 3>, [3]), (<2, 1>, [1]), (<3, 1>, [1]).

 Copy node_ids from value to key.

❖ Partition on Key.field1, and Sort on whole Key (both fields)

➢ Input: (<1, 3>, [3]), (<2, 3>, [3]), (<2, 1>, [1]), (<3, 1>, [1])

➢ Output: (<1, 3>, [3]), (<2, 1>, [1]), (<2, 3>, [3]), (<3, 1>, [1])

❖ Reducer

➢ Merge according to part of the key

➢ You need to preserve the state across input key-value pairs

➢ Output: (1, [3]), (2, [1, 3]), (3, [1])

Practice： Design MapReduce Algorithms

3.64

❖ Given a large text dataset, find the top-k frequent terms (considering

that you can utilize multiple reducers, and the efficiency of your

method is evaluated).

❖ Two rounds: first round compute term frequency in multiple reducers,

and each reducer only stores local top-k. Second round get the local

top-k, and compute the final top-k using a single reducer.

Practice： Design MapReduce Algorithms

3.65

References

❖ Data-Intensive Text Processing with MapReduce. Jimmy Lin and

Chris Dyer. University of Maryland, College Park.

❖ Hadoop The Definitive Guide. Hadoop I/O, and MapReduce Features

chapters.

End of Chapter 3.1

	Slide 1: COMP9313: Big Data Management Lecturer: Xin Cao Course web site: http://www.cse.unsw.edu.au/~cs9313/
	Slide 2
	Slide 3
	Slide 4: Computing Relative Frequencies
	Slide 5: f(wj|wi) : “Stripes”
	Slide 6: f(wj|wi) : “Pairs”
	Slide 7: f(wj|wi) : “Pairs”
	Slide 8: f(wj|wi) : “Pairs”
	Slide 9: f(wj|wi) : “Pairs”
	Slide 10: f(wj|wi) : “Pairs”
	Slide 11: f(wj|wi) : “Pairs” – Order Inversion
	Slide 12: f(wj|wi) : “Pairs” – Order Inversion
	Slide 13: f(wj|wi) : “Pairs” – Order Inversion
	Slide 14: Order Inversion
	Slide 15: Synchronization: Pairs vs. Stripes
	Slide 16
	Slide 17: Partitioner in Hadoop Streaming
	Slide 18: Partitioner in Hadoop Streaming
	Slide 19: Partitioner in Hadoop Streaming
	Slide 20: Partitioner in MRJob
	Slide 21
	Slide 22: Secondary Sort
	Slide 23: Secondary Sort
	Slide 24: Secondary Sort
	Slide 25
	Slide 26: Secondary Sort： Another Example
	Slide 27: Solutions to the Secondary Sort Problem
	Slide 28: Secondary Sorting Keys
	Slide 29: Secondary Sort by Hadoop Streaming
	Slide 30: MapReduce Algorithm Design
	Slide 31: Test and Debug MRJob Locally
	Slide 32: Test and Debug MRJob on Hadoop
	Slide 33
	Slide 34: MapReduce in Real World: Search Engine
	Slide 35: Boolean Text Retrieval: Inverted Index
	Slide 36: Boolean Text Retrieval: Inverted Index
	Slide 37: Search Using Inverted Index
	Slide 38: Boolean Query Processing: AND
	Slide 39: MapReduce it?
	Slide 40: MapReduce: Index Construction
	Slide 41: MapReduce: Index Construction
	Slide 42: Ranked Text Retrieval
	Slide 43: Term Weighting
	Slide 44: TF.IDF Term Weighting
	Slide 45: Retrieval in a Nutshell
	Slide 46: MapReduce: Index Construction
	Slide 47: Inverted Index: TF-IDF
	Slide 48: MapReduce: Index Construction
	Slide 49: MapReduce: Index Construction
	Slide 50: MapReduce: Index Construction
	Slide 51: The First Improvement
	Slide 52: The Second Improvement
	Slide 53: The Second Improvement
	Slide 54: The Second Improvement
	Slide 55: Chained MapReduce Job (MRJob)
	Slide 56
	Slide 57: Practice： Design MapReduce Algorithms
	Slide 58: Practice： Design MapReduce Algorithms
	Slide 59: Practice： Design MapReduce Algorithms
	Slide 60: Practice： Design MapReduce Algorithms
	Slide 61: Practice： Design MapReduce Algorithms
	Slide 62: Practice： Design MapReduce Algorithms
	Slide 63: Practice： Design MapReduce Algorithms
	Slide 64: Practice： Design MapReduce Algorithms
	Slide 65: References
	Slide 66: End of Chapter 3.1

