
COMP9313: Big Data Management

Lecturer: Xin Cao
Course web site: http://www.cse.unsw.edu.au/~cs9313/

1.2

Chapter 1.2 Introduction to

Hadoop, HDFS, and YARN

1.3

Part 1: Hadoop

1.4

Word Counting in Textual Data

❖ Input: A data set containing several documents

❖ Task: count the frequency of words appearing in the data set

❖ A simple solution:

➢ Initialize a dictionary (or a map structure) to store the results

➢ For each file, use a file reader to get the texts line by line.

Tokenize each line into words. For each word, increase its count

in the dictionary.

❖ Problems?

➢ The data set cannot be stored on a single machine?

1.5

Distributed Word Count

Merge

Block2 Block3 …Block1 Block4

Huge Textual Data set

Computer2 Computer3Computer1 Computer4 …

Partial Count2 Partial Count3Partial Count1 Partial Count4

Final Result

…

1.6

Distributed Word Count

❖ Challenges?

➢ Where to store the huge textual data set?

➢ How to split the data set into different blocks?

 How many blocks?

 The size of each block?

➢ What can we do if one node lost the data it received?

➢ What can we do if one node cannot be connected?

➢ … …

1.7

Distributed Processing is Non-Trivial

❖ How to assign tasks to different workers in an efficient way?

❖ What happens if tasks fail?

❖ How do workers exchange results?

❖ How to synchronize distributed tasks allocated to different workers?

❖ … …

1.8

Big Data Storage is Challenging

❖ Data Volumes are massive (e.g., even a single document cannot be

stored on a single machine)

❖ Reliability of Storing PBs of data is challenging

❖ All kinds of failures: Disk/Hardware/Network Failures

❖ Probability of failures simply increase with the number of machines …

1.9

What is Hadoop

❖ Open-source data storage and processing platform

❖ Before the advent of Hadoop, storage and processing of big data was

a big challenge

❖ Massively scalable, automatically parallelizable

➢ Based on work from Google

 Google: GFS + MapReduce + BigTable (Not open)

 Hadoop: HDFS + Hadoop MapReduce + HBase（opensource)

❖ Named by Doug Cutting in 2006 (worked at Yahoo! at that time), after

his son's toy elephant.

1.10

Hadoop Offers

❖ Redundant, Fault-tolerant data storage

❖ Parallel computation framework

❖ Job coordination

Programmers

Q: Where file is

located?

Q: How to handle

failures & data lost?

Q: How to divide

computation?

Q: How to program

for scaling?

No longer need

to worry about

… …

1.11

Why Use Hadoop?

❖ Cheaper

➢ Scales to Petabytes or more easily

❖ Faster

➢ Parallel data processing

❖ Better

➢ Suited for particular types of big data problems

1.12

Companies Using Hadoop

1.13

❖ Data storage (HDFS)

➢ Runs on commodity

hardware (usually

Linux)

➢ Horizontally scalable

Hadoop 1.x

❖ Processing (MapReduce)

➢ Parallelized (scalable)

processing

➢ Fault Tolerant

❖ Other Tools/Frameworks

➢ HBase

➢ Hive

➢ … …

HDFS Storage

Redundant (3 copies)

For large files – large blocks

64 or 128 MB / block

Can scale to 1000s of
nodes

MapReduce API

Batch (Job) processing

Distributed and Localized to
clusters (Map)

Auto-Parallelizable for huge
amounts of data

Fault-tolerant (auto retries)

Adds high availability and
more

Pig

Hive

HBase

Others

Other Libraries

1.14

Hadoop 2.x

❖ Single Use System

➢ Batch apps

❖ Multi-Purpose Platform

➢ Batch, Interactive, Online, Streaming

Hadoop 1.x Hadoop 2.x

HDFS
(redundant, reliable storage)

MapReduce
(cluster resource management

& data processing)

Hive
(sql)

Pig
(data flow)

Others

HDFS
(redundant, highly available & reliable storage)

YARN
(cluster resource management)

MapReduce
(batch processing)

Spark
(in-memory)

Storm
(streaming)

Others

Hadoop YARN (Yet Another Resource Negotiator): a resource-

management platform responsible for managing computing resources in

clusters and using them for scheduling of users' applications

1.15

Hadoop 3.x

Hadoop 2.x Hadoop 3.x

Minimum supported

Java version

JAVA 7 JAVA 8/11

Storage Scheme 3x Replication Scheme Erasure encoding in HDFS

Fault Tolerance Replication is the only way

to handle fault tolerance

which is not space

optimized.

Erasure coding is used for

handling fault tolerance.

Storage Overhead 200% of HDFS (6 blocks of

data will occupy the space

of 18 blocks due

to replication factor)

50% (6 blocks of data will

occupy 9 blocks i.e 6 blocks

for actual data and 3 blocks for

parity)

Scalability Limited Scalability, can have

upto 10000 nodes in a

cluster.

Scalability is improved, can

have more then 10000 nodes

in a cluster.

NameNodes A single active NameNode

and a single Standby

NameNode

allows users to run multiple

standby NameNodes to

tolerate the failure of more

nodes

https://hadoop.apache.org/docs/stable/index.html

https://hadoop.apache.org/docs/stable/index.html

1.16

Hadoop Ecosystem

https://www.softwaretestingclass.com/introduction-to-hadoop-architecture-and-components/

A combination of technologies which have proficient advantage in solving business problems.

https://www.softwaretestingclass.com/introduction-to-hadoop-architecture-and-components/

1.17

Common Hadoop Distributions

❖ Open Source

➢ Apache

❖ Commercial

➢ Cloudera

➢ Hortonworks

➢ MapR

➢ AWS MapReduce

➢ Microsoft Azure

1.18

Setting up Hadoop Development

Hadoop
Binaries

Local install

•Linux

•Windows

Cloudera’s Demo
VM

•Need Virtualization
software, i.e. VMware,
etc…

Cloud

•AWS

•Microsoft

•Others

Data Storage

Local

•File System

•HDFS Pseudo-
distributed (single-
node)

Cloud

•AWS

•Azure

•Others

MapReduce

Local

Cloud

Other
Libraries &

Tools

Vendor Tools

Libraries

1.19

AWS (Amazon Web Services)

❖ Amazon

From Wikipedia 2006 From Wikipedia 2017

1.20

AWS (Amazon Web Services)

❖ AWS is a subsidiary of Amazon.com, which offers a suite of cloud

computing services that make up an on-demand computing platform.

❖ Amazon Web Services (AWS) provides a number of different services,

including:

➢ Amazon Elastic Compute Cloud (EC2)

Virtual machines for running custom software

➢ Amazon Simple Storage Service (S3)

Simple key-value store, accessible as a web service

➢ Amazon Elastic MapReduce (EMR)

Scalable MapReduce computation

➢ Amazon DynamoDB

Distributed NoSQL database, one of several in AWS

➢ Amazon SimpleDB

Simple NoSQL database

➢ ...

1.21

Google Dataproc

❖ Dataproc is a fully managed and highly scalable service for running

Apache Spark, Apache Flink, Apache Hive, and 30+ open source tools

and frameworks.

➢ Fast & Scalable Data Processing

➢ Affordable Pricing

➢ Open Source Ecosystem

1.22

Comparing: RDBMS vs. Hadoop

https://www.educba.com/hadoop-vs-rdbms/

https://www.educba.com/hadoop-vs-rdbms/

1.23

The Changing Data Management Landscape

1.24

Part 2: HDFS

1.25

File System

❖ A filesystem is the methods and data structures that an operating

system uses to keep track of files on a disk or partition; that is, the

way the files are organized on the disk.

1.26

Latency and Throughput

❖ Latency is the time required to perform some action or to produce

some result.

➢ Measured in units of time -- hours, minutes, seconds,

nanoseconds or clock periods.

➢ I/O latency: the time that it takes to complete a single I/O.

❖ Throughput is the number of such actions executed or results

produced per unit of time.

➢ Measured in units of whatever is being produced (e.g., data) per

unit of time.

➢ Disk throughput: the maximum rate of sequential data transfer,

measured by Mb/sec etc.

1.27

How to Move Data to Workers?

Compute Nodes

NAS

SAN

What’s the problem here?

In many traditional cluster architectures, storage

is viewed as a distinct and separate component

from computation.

As dataset sizes increase, the link between the

compute nodes and the storage becomes a

bottleneck!

1.28

Distributed File System

❖ Don’t move data to workers… move workers to the data!

➢ Store data on the local disks of nodes in the cluster

➢ Start up the workers on the node that has the data local

❖ Why?

➢ Not enough RAM to hold all the data in memory

➢ Disk access is slow (low-latency), but disk throughput is

reasonable (high throughput)

❖ A distributed file system is the answer

➢ A distributed file system is a client/server-based application that

allows clients to access and process data stored on the server as

if it were on their own computer

➢ GFS (Google File System) for Google’s MapReduce

➢ HDFS (Hadoop Distributed File System) for Hadoop

1.29

Assumptions and Goals of HDFS

❖ Very large datasets

➢ 10K nodes, 100 million files, 10PB

❖ Streaming data access

➢ Designed more for batch processing rather than interactive use by

users

➢ The emphasis is on high throughput of data access rather than

low latency of data access.

❖ Simple coherency model

➢ Built around the idea that the most efficient data processing

pattern is a write-once read-many-times pattern

➢ A file once created, written, and closed need not be changed

except for appends and truncates

❖ “Moving computation is cheaper than moving data”

➢ Data locations exposed so that computations can move to where

data resides

1.30

Assumptions and Goals of HDFS (Cont’)

❖ Assumes Commodity Hardware

➢ Files are replicated to handle hardware failure

➢ Hardware failure is normal rather than exception. Detect failures

and recover from them

❖ Portability across heterogeneous hardware and software platforms

➢ designed to be easily portable from one platform to another

❖ HDFS is not suited for:

➢ Low-latency data access (HBase is a better option)

➢ Lots of small files (NameNodes hold metadata in memory)

1.31

HDFS Architecture

❖ HDFS is a block-structured file system: Files broken into blocks of

64MB or 128MB

❖ A file can be made of several blocks, and they are stored across a

cluster of one or more machines with data storage capacity.

❖ Each block of a file is replicated across a number of machines, To

prevent loss of data.

1.32

HDFS Architecture

❖ HDFS has a master/slave architecture.

❖ There are two types (and a half) of machines in a HDFS cluster

➢ NameNode: the heart of an HDFS filesystem, it maintains and

manages the file system metadata. E.g., what blocks make up a

file, and on which datanodes those blocks are stored.

 Only one in an HDFS cluster

➢ DataNode: where HDFS stores the actual data. Serves read, write

requests, performs block creation, deletion, and replication upon

instruction from Namenode

 A number of DataNodes usually one per node in a cluster.

 A file is split into one or more blocks and set of blocks are

stored in DataNodes.

➢ Secondary NameNode: NOT a backup of NameNode!!

 Checkpoint node. Periodic merge of Transaction log

 Help NameNode start up faster next time

1.33

HDFS Architecture

1.34

Functions of a NameNode

❖ Managing the file system namespace:

➢ Maintain the namespace tree operations like opening, closing, and

renaming files and directories.

➢ Determine the mapping of file blocks to DataNodes (the physical

location of file data).

➢ Store file metadata.

❖ Coordinating file operations:

➢ Directs clients to DataNodes for reads and writes

➢ No data is moved through the NameNode

❖ Maintaining overall health:

➢ Collect block reports and heartbeats from DataNodes

➢ Block re-replication and rebalancing

➢ Garbage collection

1.35

NameNode Metadata

❖ HDFS keeps the entire namespace in RAM, allowing fast access to the

metadata.

➢ 4GB of local RAM is sufficient

❖ Types of metadata

➢ List of files

➢ List of Blocks for each file

➢ List of DataNodes for each block

➢ File attributes, e.g. creation time, replication factor

❖ A Transaction Log (EditLog)

➢ Records file creations, file deletions etc

1.36

Functions of DataNodes

❖ Responsible for serving read and write requests from the file system’s

clients.

❖ Perform block creation, deletion, and replication upon instruction from

the NameNode.

❖ Periodically sends a report of all existing blocks to the NameNode

(Blockreport)

❖ Facilitates Pipelining of Data

➢ Forwards data to other specified DataNodes

1.37

❖ Heartbeats

➢ DataNodes send heartbeats to the NameNode to confirm that the

DataNode is operating and the block replicas it hosts are

available.

 Once every 3 seconds

➢ The NameNode marks DataNodes without recent Heartbeats as

dead and does not forward any new IO requests to them

❖ Blockreports

➢ A Blockreport contains a list of all blocks on a DataNode

❖ The Namenode receives a Heartbeat and a BlockReport from each

DataNode in the cluster periodically

Communication between NameNode and DataDode

1.38

Communication between NameNode and DataDode

❖ TCP – every 3 seconds a Heartbeat

❖ Every 10th heartbeat is a Blockreport

❖ Name Node builds metadata from Blockreports

❖ If Name Node is down, HDFS is down

1.39

Inside NameNode

❖ FsImage - the snapshot of the filesystem when NameNode started

➢ A master copy of the metadata for the file system

❖ EditLogs - the sequence of changes made to the filesystem after

NameNode started

1.40

Inside NameNode

❖ Only in the restart of NameNode, EditLogs are applied to FsImage to

get the latest snapshot of the file system.

❖ But NameNode restart are rare in production clusters which means

EditLogs can grow very large for the clusters where NameNode runs

for a long period of time.

➢ EditLog become very large , which will be challenging to manage it

➢ NameNode restart takes long time because lot of changes has to

be merged

➢ In the case of crash, we will lose huge amount of metadata since

FsImage is very old

❖ How to overcome this issue?

1.41

Secondary NameNode

❖ Secondary NameNode helps to overcome the above issues by taking

over responsibility of merging EditLogs with FsImage from the

NameNode.

➢ It gets the EditLogs from the NameNode periodically and applies

to FsImage

➢ Once it has new FsImage, it copies back to NameNode

➢ NameNode will use this FsImage for the next restart, which will

reduce the startup time

1.42

File System Namespace

❖ Hierarchical file system with directories and files

➢ /user/comp9313

❖ Create, remove, move, rename etc.

❖ NameNode maintains the file system

❖ Any meta information changes to the file system recorded by the

NameNode (EditLog).

❖ An application can specify the number of replicas of the file needed:

replication factor of the file.

1.43

HDFS Commands

❖ All HDFS commands are invoked by the bin/hdfs script. Running the

hdfs script without any arguments prints the description for all

commands.

❖ Usage: hdfs [SHELL_OPTIONS] COMMAND [GENERIC_OPTIONS]

[COMMAND_OPTIONS]

➢ hdfs dfs [COMMAND [COMMAND_OPTIONS]]

➢ Run a filesystem command on the file system supported in

Hadoop. The various COMMAND_OPTIONS can be found at File

System Shell Guide.

https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/FileSystemShell.html

1.44

Data Replication

❖ The NameNode makes all decisions regarding replication of blocks.

1.45

File Read Data Flow in HDFS

1.46

File Write Data Flow in HDFS

1.47

Replication Engine

❖ NameNode detects DataNode failures

➢ Missing Heartbeats signify lost Nodes

➢ NameNode consults metadata, finds affected data

➢ Chooses new DataNodes for new replicas

➢ Balances disk usage

➢ Balances communication traffic to DataNodes

1.48

Cluster Rebalancing

❖ Goal: % disk full on DataNodes should be similar

➢ Usually run when new DataNodes are added

➢ Rebalancer is throttled to avoid network congestion

➢ Does not interfere with MapReduce or HDFS

➢ Command line tool

1.49

Fault tolerance

❖ Failure is the norm rather than exception

❖ A HDFS instance may consist of thousands of server machines, each

storing part of the file system’s data.

❖ Since we have huge number of components, and that each

component has non-trivial probability of failure means that there is

always some component that is non-functional.

❖ Detection of faults and quick, automatic recovery from them is a core

architectural goal of HDFS.

1.50

Metadata Disk Failure

❖ FsImage and EditLog are central data structures of HDFS. A

corruption of these files can cause a HDFS instance to be non-

functional.

➢ A NameNode can be configured to maintain multiple copies of the

FsImage and EditLog

➢ Multiple copies of the FsImage and EditLog files are updated

synchronously

1.51

HDFS Erasure Coding

❖ Replication is expensive – the default 3x replication scheme in HDFS

has 200% overhead in storage space and other resources.

❖ Therefore, a natural improvement is to use Erasure Coding (EC) in

place of replication, which provides the same level of fault-tolerance

with much less storage space.

➢ Erasure Coding transforms a message of k symbols into a longer

message with n symbols such that the original message can be

recovered from a subset of the n symbols.

➢ In typical Erasure Coding (EC) setups, the storage overhead is no

more than 50%.

https://en.wikipedia.org/wiki/Erasure_code

https://en.wikipedia.org/wiki/Erasure_code

1.52

Unique features of HDFS

❖ HDFS has a bunch of unique features that make it ideal for distributed

systems:

➢ Failure tolerant - data is duplicated across multiple DataNodes to

protect against machine failures. The default is a replication factor

of 3 (every block is stored on three machines).

➢ Scalability - data transfers happen directly with the DataNodes so

your read/write capacity scales fairly well with the number of

DataNodes

➢ Space - need more disk space? Just add more DataNodes and re-

balance

➢ Industry standard - Other distributed applications are built on top

of HDFS (HBase, MapReduce)

❖ HDFS is designed to process large data sets with write-once-read-

many semantics, it is not for low latency access

1.53

Part 3: YARN

1.54

Why YARN

❖ In Hadoop version 1, MapReduce performed both processing and

resource management functions.

➢ It consisted of a Job Tracker which was the single master. The

Job Tracker allocated the resources, performed scheduling and

monitored the processing jobs.

➢ It assigned map and reduce tasks on a number of subordinate

processes called the Task Trackers. The Task Trackers

periodically reported their progress to the Job Tracker.

1.55

What is YARN

❖ YARN - “Yet Another Resource Negotiator”

➢ The resource management layer of Hadoop, introduced in Hadoop

2.x

➢ Monitors and manages workloads, maintains a multi-tenant

environment, manages the high availability features of Hadoop,

and implements security controls

❖ Motivation:

➢ Flexibility - Enabling data processing model more than

MapReduce

➢ Efficiency - Improving performance and QoS

➢ Resource Sharing - Multiple workloads in cluster

1.56

What is YARN

❖ YARN was introduced in Hadoop version 2.0 in the year 2012 by

Yahoo and Hortonworks.

❖ The basic idea behind YARN is to relieve MapReduce by taking over

the responsibility of Resource Management and Job Scheduling.

❖ YARN enabled the users to perform operations as per requirement by

using a variety of tools like Spark for real-time processing, Hive for

SQL, HBase for NoSQL and others.

1.57

YARN Framework

1.58

YARN Components

❖ ResourceManager

➢ Arbitrates resources among all the applications in the system

❖ ApplicationMaster

➢ A framework specific library and is tasked with negotiating

resources from the ResourceManager and working with the

NodeManager(s) to execute and monitor the tasks

❖ NodeManager

➢ The per-machine framework agent who is responsible for

containers, monitoring their resource usage (cpu, memory, disk,

network) and reporting the same to the ResourceManager

❖ Container

➢ Unit of allocation incorporating resource elements such as

memory, cpu, disk, network etc, to execute a specific task of the

application

1.59

Application Workflow in YARN

❖ Execution Sequence

➢ 1. A client program submits the application

➢ 2. ResourceManager allocates a specified container to start the

ApplicationMaster

➢ 3. ApplicationMaster, on boot-up, registers with ResourceManager

➢ 4. ApplicationMaster negotiates with ResourceManager for

appropriate resource containers

➢ 5. On successful container allocations, ApplicationMaster contacts

NodeManager to launch the container

➢ 6. Application code is executed within the container, and then

ApplicationMaster is responded with the execution status

➢ 7. During execution, the client communicates directly with

ApplicationMaster or ResourceManager to get status, progress

updates etc.

➢ 8. Once the application is complete, ApplicationMaster unregisters

with ResourceManager and shuts down, allowing its own

container process

1.60

References

❖ HDFS Architecture. https://hadoop.apache.org/docs/stable/hadoop-

project-dist/hadoop-hdfs/HdfsDesign.html

❖ Understanding Hadoop Clusters and the Network.

https://bradhedlund.com/2011/09/10/understanding-hadoop-clusters-

and-the-network/

❖ YARN tutorial. https://www.edureka.co/blog/hadoop-yarn-tutorial/

https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
https://bradhedlund.com/2011/09/10/understanding-hadoop-clusters-and-the-network/
https://www.edureka.co/blog/hadoop-yarn-tutorial/

End of Chapter 1.2

