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Chapter 8.1: Graph Data Management
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Graph Data Processing in MapReduce
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What’s a Graph?

❖ G = (V,E), where

➢ V represents the set of vertices (nodes)

➢ E represents the set of edges (links)

➢ Both vertices and edges may contain additional information

❖ Different types of graphs:

➢ Directed vs. undirected edges

➢ Presence or absence of cycles

❖ Graphs are everywhere:

➢ Hyperlink structure of the Web

➢ Physical structure of computers on the Internet

➢ Interstate highway system

➢ Social networks
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Graph Analytics

❖ General Graph 

➢ Count the number of nodes whose degree is equal to 5

➢ Find the diameter of the graphs

❖ Web Graph

➢ Rank each webpage in the web graph or each user in the twitter 

graph using PageRank, or other centrality measure

❖ Transportation Network

➢ Return the shortest or cheapest flight/road from one city to another

❖ Social Network

➢ Detect a group of users who have similar interests

❖ Financial Network

➢ Find the path connecting two suspicious transactions;

❖ … …
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Graphs and MapReduce

❖ Graph algorithms typically involve:

➢ Performing computations at each node: based on node features, 

edge features, and local link structure

➢ Propagating computations: “traversing” the graph

❖ Key questions:

➢ How do you represent graph data in MapReduce?

➢ How do you traverse a graph in MapReduce?
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Representing Graphs

❖ Adjacency Matrices: Represent a graph as an n x n square matrix M

➢ n = |V|

➢ Mij = 1 means a link from node i to j

1 2 3 4

1 0 1 0 1

2 1 0 1 1

3 1 0 0 0

4 1 0 1 0

1

2

3

4
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Adjacency Matrices: Critique

❖ Advantages:

➢ Amenable to mathematical manipulation

➢ Iteration over rows and columns corresponds to computations on 

outlinks and inlinks

❖ Disadvantages:

➢ Lots of zeros for sparse matrices

➢ Lots of wasted space
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Representing Graphs

❖ Adjacency Lists: Take adjacency matrices… and throw away all the 

zeros

1 2 3 4

1 0 1 0 1

2 1 0 1 1

3 1 0 0 0

4 1 0 1 0

1: 2, 4

2: 1, 3, 4

3: 1

4: 1, 3
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Adjacency Lists: Critique

❖ Advantages:

➢ Much more compact representation

➢ Easy to compute over outlinks

❖ Disadvantages:

➢ Much more difficult to compute over inlinks
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Single-Source Shortest Path
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Single-Source Shortest Path (SSSP)

❖ Problem: find shortest path from a source node to one or more target 

nodes

➢ Shortest might also mean lowest weight or cost

❖ Dijkstra’s Algorithm: 

➢ For a given source node in the graph, the algorithm finds the 

shortest path between that node and every other
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Dijkstra’s Algorithm
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Dijkstra’s Algorithm Example
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Dijkstra’s Algorithm Example
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Dijkstra’s Algorithm Example
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Dijkstra’s Algorithm Example
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Dijkstra’s Algorithm Example
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Dijkstra’s Algorithm Example
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Single Source Shortest Path

❖ Problem: find shortest path from a source node to one or more target 

nodes

➢ Shortest might also mean lowest weight or cost

❖ Single processor machine: Dijkstra’s Algorithm

❖ MapReduce: parallel Breadth-First Search (BFS)
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Finding the Shortest Path

❖ Consider simple case of equal edge weights

❖ Solution to the problem can be defined inductively

❖ Here’s the intuition:

➢ Define: b is reachable from a if b is on adjacency list of a

➢ DISTANCETO(s) = 0

➢ For all nodes p reachable from s, 

DISTANCETO(p) = 1

➢ For all nodes n reachable from some other set of nodes M, 

DISTANCETO(n) = 1 + min(DISTANCETO(m), m  M)

s

m3

m2

m1

n

…

…

…

d1

d2

d3



3.22

Visualizing Parallel BFS
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From Intuition to Algorithm

❖ Data representation:

➢ Key: node n

➢ Value: d (distance from start), adjacency list (list of nodes 

reachable from n)

➢ Initialization: for all nodes except for start node, d = 

❖ Mapper:

➢ m  adjacency list: emit (m, d + 1)

❖ Sort/Shuffle

➢ Groups distances by reachable nodes

❖ Reducer:

➢ Selects minimum distance path for each reachable node

➢ Additional bookkeeping needed to keep track of actual path
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Multiple Iterations Needed

❖ Each MapReduce iteration advances the “known frontier” by one hop

➢ Subsequent iterations include more and more reachable nodes as 

frontier expands

➢ The input of Mapper is the output of Reducer in the previous 

iteration

➢ Multiple iterations are needed to explore entire graph

❖ Preserving graph structure:

➢ Problem: Where did the adjacency list go?

➢ Solution: mapper emits (n, adjacency list) as well
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BFS Pseudo-Code

❖ Equal Edge Weights (how to deal with weighted edges?)

❖ Only distances, no paths stored (how to obtain paths?)

class Mapper

method Map(nid n, node N)

d ← N.Distance

Emit(nid n,N.AdjacencyList) //Pass along graph structure

for all nodeid m ∈ N.AdjacencyList do

Emit(nid m, d+1) //Emit distances to reachable nodes

class Reducer

method Reduce(nid m, [d1, d2, . . .])

dmin←∞

M ← ∅
for all d ∈ counts [d1, d2, . . .] do

if IsNode(d) then

M.AdjacencyList ← d //Recover graph structure

else if d < dmin then //Look for shorter distance

dmin ← d

M.Distance ← dmin //Update shortest distance

Emit(nid m, node M)
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Stopping Criterion

❖ How many iterations are needed in parallel BFS (equal edge weight 

case)?

❖ Convince yourself: when a node is first “discovered”, we’ve found the 

shortest path

❖ Now answer the question...

➢ The diameter of the graph, or the greatest distance between any 

pair of nodes

➢ Six degrees of separation?

 If this is indeed true, then parallel breadth-first search on the 

global social network would take at most six MapReduce 

iterations.
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Implementation in MapReduce

❖ The actual checking of the termination condition must occur outside of 

MapReduce. 

❖ The driver (main) checks to see if a termination condition has been 

met, and if not, repeats. 

❖ Hadoop provides a lightweight API called “counters”. 

➢ It can be used for counting events that occur during execution, 

e.g., number of corrupt records, number of times a certain 

condition is met, or anything that the programmer desires. 

➢ Counters can be designed to count the number of nodes that have 

distances of ∞ at the end of the job, the driver program can access 

the final counter value and check to see if another iteration is 

necessary.
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Chained MapReduce Job (Java)

❖ In the main function, you can configure like:

https://github.com/himank/Graph-Algorithm-MapReduce/blob/master/src/DijikstraAlgo.java

String input = IN;

String output = OUT + System.nanoTime();

boolean isdone = false;

while (isdone == false) {

Job job = Job.getInstance(conf, "traverse job");

//configure your jobs here such as mapper and reducer classes

FileInputFormat.addInputPath(job, new Path(input));

FileOutputFormat.setOutputPath(job, new Path(output));

job.waitForCompletion(true); //start the job

Counters counters = job.getCounters();

Counter counter = counters.findCounter(MY_COUNTERS.REACHED);

if(counter.getValue() == 0){ //use the counter to check the termination

isdone = true;

}

input = output; //make the current output as the next input

output = OUT + System.nanoTime();

}

https://github.com/himank/Graph-Algorithm-MapReduce/blob/master/src/DijikstraAlgo.java
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MapReduce Counters

❖ Instrument Job’s metrics

➢ Gather statistics 

 Quality control – confirm what was expected. 

– E.g., count invalid records 

 Application-level statistics.

➢ Problem diagnostics 

➢ Try to use counters for gathering statistics instead of log files

❖ Framework provides a set of built-in metrics

➢ For example, bytes processed for input and output

❖ User can create new counters

➢ Number of records consumed

➢ Number of errors or warnings
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Built-in Counters

❖ Hadoop maintains some built-in counters for every job.

❖ Several groups for built-in counters

➢ File System Counters – number of bytes read and written

➢ Job Counters – documents number of map and reduce tasks 

launched, number of failed tasks

➢ Map-Reduce Task Counters– mapper, reducer, combiner input 

and output records counts, time and memory statistics
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User-Defined Counters

❖ You can create your own counters

➢ Counters are defined by a Java enum

 serves to group related counters

 E.g., 

enum Temperature {

MISSING,

MALFORMED

}

❖ Increment counters in Reducer and/or Mapper classes

➢ Counters are global: Framework accurately sums up counts 

across all maps and reduces to produce a grand total at the end of 

the job
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Implement User-Defined Counters

❖ Retrieve Counter from Context object

➢ Framework injects Context object into map and reduce methods

❖ Increment Counter’s value

➢ Can increment by 1 or more
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Implement User-Defined Counters

❖ Get Counters from a finished job in Java 

➢ Counter counters = job.getCounters()

❖ Get the counter according to name

➢ Counter c1 = counters.findCounter(Temperature.MISSING)

❖ Enumerate all counters after job is completed

for (CounterGroup group : counters) {

System.out.println("* Counter Group: " + group.getDisplayName() + " (" + 

group.getName() + ")");

System.out.println(" number of counters in this group: " + group.size());

for (Counter counter : group) {

System.out.println(" - " + counter.getDisplayName() + ": " + 

counter.getName() + ": "+counter.getValue());

}

}
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Counters in MRJob

❖ A counter has a group, a name, and an integer value. Hadoop itself 

tracks a few counters automatically. mrjob prints your job’s counters to 

the command line when your job finishes, and they are available to the 

runner object if you invoke it programmatically.

❖ To increment a counter from anywhere in your job, use the 

increment_counter() method:

❖ At the end of your job, you’ll get the counter’s total value. 

❖ You can also read the counters by using “runner.counters()”

https://mrjob.readthedocs.io/en/latest/guides/runners.html

https://mrjob.readthedocs.io/en/latest/guides/runners.html
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How to Find the Shortest Path?

❖ The parallel breadth-first search algorithm only finds the shortest 

distances.

❖ Store “back-pointers” at each node, as with Dijkstra's algorithm

➢ Not efficient to recover the path from the back-pointers

❖ A simpler approach is to emit paths along with distances in the 

mapper, so that each node will have its shortest path easily accessible 

at all times

➢ The additional space requirement is acceptable
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BFS Pseudo-Code (Weighted Edges)

❖ The adjacency lists, which were previously lists of node ids, must now 

encode the edge distances as well

➢ Positive weights!

❖ In line 6 of the mapper code, instead of emitting d + 1 as the value, we 

must now emit d + w, where w is the edge distance

❖ The termination behaviour is very different!

➢ How many iterations are needed in parallel BFS (positive edge 

weight case)?

➢ Convince yourself: when a node is first “discovered”, we’ve found 

the shortest path



3.37

Additional Complexities

❖ Assume that p is the current processed node

➢ In the current iteration, we just “discovered” node r for the very first 

time. 

➢ We've already discovered the shortest distance to node p, and 

that the shortest distance to r so far goes through p

➢ Is s->p->r the shortest path from s to r?

❖ The shortest path from source s to node r may go outside the current 

search frontier

➢ It is possible that p->q->r is shorter than p->r! 

➢ We will not find the shortest distance to r until the search frontier 

expands to cover q.

s

p
q

r

search frontier
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How Many Iterations Are Needed?

❖ In the worst case, we might need as many iterations as there are 

nodes in the graph minus one

➢ A sample graph that elicits worst-case behaviour for parallel 

breadth-first search.

➢ Eight iterations are required to discover shortest distances to all 

nodes from n1.

10

n1

n2

n3

n4

n5

n6 n7

n8

n9

1

1
1

1

1

1

1

1
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Example (only distances)

❖ Input file:

s  --> 0 | n1: 10, n2: 5

n1 --> ∞ | n2: 2, n3:1

n2 --> ∞ | n1: 3, n3:9， n4:2

n3 --> ∞ | n4:4 

n4 --> ∞ | s:7, n3:6
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Iteration 1

❖ Map: 

Read s  --> 0 | n1: 10, n2: 5

Emit: (n1, 10), (n2, 5), and the adjacency list (s, n1: 10, n2: 5)

The other lists will also be read and emit, but they do not contribute, and 

thus ignored

❖ Reduce: 

Receives: (n1, 10), (n2, 5), (s, <0, (n1: 10, n2: 5)>)

The adjacency list of each node will also be received, ignored in example

Emit:

s  --> 0 | n1: 10, n2: 5

n1 --> 10 | n2: 2, n3:1

n2 --> 5 | n1: 3, n3:9， n4:2
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Iteration 2

❖ Map: 

Read: n1 --> 10 | n2: 2, n3:1

Emit: (n2, 12), (n3, 11), (n1, <10, (n2: 2, n3:1)>)

Read: n2 --> 5 | n1: 3, n3:9， n4:2

Emit: (n1, 8), (n3, 14), (n4, 7)，(n2, <5, (n1: 3, n3:9，n4:2)>)

Ignore the processing of the other lists

❖ Reduce: 

Receives: (n1, (8, <10, (n2: 2, n3:1)>)), (n2, (12, <5, n1: 3, n3:9，n4:2>)), 

(n3, (11, 14)), (n4, 7)

Emit:

n1 --> 8 | n2: 2, n3:1

n2 --> 5 | n1: 3, n3:9， n4:2

n3 --> 11 | n4:4

n4 --> 7 | s:7, n3:6
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Iteration 3

❖ Map: 

Read: n1 --> 8 | n2: 2, n3:1

Emit: (n2, 10), (n3, 9), (n1, <8, (n2: 2, n3:1)>)

Read: n2 --> 5 | n1: 3, n3:9， n4:2 (Again!)

Emit: (n1, 8), (n3, 14), (n4, 7)，(n2, <5, (n1: 3, n3:9，n4:2)>)

Read: n3 --> 11 | n4:4

Emit: (n4, 15)，(n3, <11, (n4:4)>)

Read: n4 --> 7 | s:7, n3:6

Emit: (s, 14), (n3, 13), (n4, <7, (s:7, n3:6)>)

❖ Reduce: 

Emit:

n1 --> 8 | n2: 2, n3:1

n2 --> 5 | n1: 3, n3:9， n4:2

n3 --> 9 | n4:4

n4 --> 7 | s:7, n3:6
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Iteration 4

❖ Map: 

Read: n1 --> 8 | n2: 2, n3:1 (Again!)

Emit: (n2, 10), (n3, 9), (n1, <8, (n2: 2, n3:1)>)

Read: n2 --> 5 | n1: 3, n3:9， n4:2 (Again!)

Emit: (n1, 8), (n3, 14), (n4, 7)，(n2, <5, (n1: 3, n3:9，n4:2)>)

Read: n3 --> 9 | n4:4

Emit: (n4, 13)，(n3, <9, (n4:4)>)

Read: n4 --> 7 | s:7, n3:6 (Again!)

Emit: (s, 14), (n3, 13), (n4, <7, (s:7, n3:6)>)

❖ Reduce: 

Emit:

n1 --> 8 | n2: 2, n3:1

n2 --> 5 | n1: 3, n3:9， n4:2

n3 --> 9 | n4:4

n4 --> 7 | s:7, n3:6
No updates. Terminate.

In order to avoid duplicated 

computations, you can use 

a status value to indicate 

whether the distance of the 

node has been modified in 

the previous iteration.
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Comparison to Dijkstra

❖ Dijkstra’s algorithm is more efficient 

➢ At any step it only pursues edges from the minimum-cost path 

inside the frontier

❖ MapReduce explores all paths in parallel

➢ Lots of “waste”

➢ Useful work is only done at the “frontier”

❖ Why can’t we do better using MapReduce?
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PageRank
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Web as a Directed Graph

❖ Web as a directed graph:

➢ Nodes: Webpages

➢ Edges: Hyperlinks
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Broad Question

❖ How to organize the Web?

❖ First try: Human curated

Web directories

➢ Yahoo, LookSmart, etc.

❖ Second try: Web Search

➢ Information Retrieval investigates:

Find relevant docs in a small 

and trusted set

 Newspaper articles, Patents, etc.

➢ But: Web is huge, full of untrusted documents, random things, web 

spam, etc.

❖ What is the “best” answer to query “newspaper”?

➢ No single right answer
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Ranking Nodes on the Graph

❖ All web pages are not equally “important”

➢ http://xxx.github.io/ vs. http://www.unsw.edu.au/

❖ There is large diversity in the web-graph node connectivity. Let’s rank 

the pages by the link structure!
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Link Analysis Algorithms

❖ We will cover the following Link Analysis approaches for computing 

importance of nodes in a graph:

➢ Page Rank

➢ Topic-Specific (Personalized) Page Rank

➢ HITS

➢ … ...
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Links as Votes

❖ Idea: Links as votes

➢ Page is more important if it has more links

➢ In-coming links? Out-going links?

❖ Think of in-links as votes:

➢ http://www.unsw.edu.au/ has 23,400 in-links

➢ http://xxx.github.io/ has 1 in-link

❖ Are all in-links equal?

➢ Links from important pages count more

➢ Recursive question! 
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Example: PageRank Scores

B

38.4
C

34.3

E

8.1
F

3.9

D

3.9

A

3.3

1.6
1.6 1.6 1.6 1.6
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Simple Recursive Formulation

❖ Each link’s vote is proportional to the importance of its source page

❖ If page j with importance rj has n out-links, each link gets rj / n votes

❖ Page j’s own importance is the sum of the votes on its in-links

j

ki

rj/3

rj/3rj/3
rj = ri/3+rk/4

ri/3 rk/4
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PageRank: The “Flow” Model

❖ A “vote” from an important page is 

worth more

❖ A page is important if it is pointed to by 

other important pages

❖ Define a “rank” rj for page j


→

=
ji

i
j

r
r

id

y

ma
a/2

y/2
a/2

m

y/2

“Flow” equations:

ry  = ry /2 + ra /2

ra  = ry /2 + rm

rm = ra /2
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Solving the Flow Equations

❖ 3 equations, 3 unknowns, no constants

➢ No unique solution

➢ All solutions equivalent modulo the scale factor

❖ Additional constraint forces uniqueness:

➢ 𝒓𝒚  + 𝒓𝒂 +  𝒓𝒎  =  𝟏

➢ Solution: 𝒓𝒚  =
𝟐

𝟓
, 𝒓𝒂  =

𝟐

𝟓
, 𝒓𝒎  =

𝟏

𝟓

❖ Gaussian elimination method works for small examples, but we need 

a better method for large web-size graphs

❖ We need a new formulation!

ry  = ry /2 + ra /2

ra  = ry /2 + rm

rm = ra /2

Flow equations:
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PageRank: Matrix Formulation

❖ Stochastic adjacency matrix 𝑴

➢ Let page 𝑖 has 𝑑𝑖 out-links

➢ If 𝑖 → 𝑗, then  𝑀𝑗𝑖 =
1

𝑑
𝑖

    else   𝑀𝑗𝑖 =  0

 𝑴 is a column stochastic matrix

– Columns sum to 1

❖ Rank vector 𝒓: vector with an entry per page

➢ 𝑟𝑖 is the importance score of page 𝑖

➢ σ𝑖 𝑟𝑖 = 1

❖ The flow equations can be written 

   𝒓 =  𝑴 ⋅  𝒓
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Example

❖ Remember the flow equation:

❖ Flow equation in the matrix form

𝑴 ⋅  𝒓 = 𝒓

➢ Suppose page i links to 3 pages, including j


→

=
ji

i
j

r
r

id

j

i

M r r

=
rj

1/3

ri

.

. =
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Eigenvector Formulation

❖ The flow equations can be written 

  𝒓 =  𝑴 ∙  𝒓
❖ So the rank vector r is an eigenvector of the stochastic web matrix 

M

➢ In fact, its first or principal eigenvector, 

with corresponding eigenvalue 1

 Largest eigenvalue of M is 1 since M is

column stochastic (with non-negative entries)

– We know r is unit length and each column of M

sums to one, so 𝑴𝒓 ≤ 𝟏 

❖ We can now efficiently solve for r! 

➢ The method is called Power iteration

NOTE: x is an 

eigenvector with 

the corresponding 

eigenvalue λ if:

𝑨𝒙 = 𝝀𝒙
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Example: Flow Equations & M

r = M∙r

y       ½    ½    0     y

 a   =  ½     0    1     a

 m       0    ½    0    m

y

a m

y a m

y ½ ½ 0

a ½ 0 1

m 0 ½ 0

ry  = ry /2 + ra /2

ra  = ry /2 + rm

rm = ra /2
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Power Iteration Method

❖ Given a web graph with n nodes, where the nodes are pages and 

edges are hyperlinks

❖ Power iteration: a simple iterative scheme

➢ Suppose there are N web pages

➢ Initialize: r(0) = [1/N,….,1/N]T

➢ Iterate: r(t+1) = M ∙ r(t)

➢ Stop when |r(t+1) – r(t)|1 < 


→

+
=

ji

t

it

j

r
r

i

)(
)1(

d
di …. out-degree of node i

|x|1 = 1≤i≤N|xi| is the L1 norm 

Can use any other vector norm, e.g., Euclidean
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PageRank: How to solve?

❖ Power Iteration:

➢ Set 𝑟𝑗 = 1/N

➢ 1: 𝑟′𝑗 = σ𝑖→𝑗
𝑟𝑖

𝑑𝑖

➢ 2: 𝑟 = 𝑟′

➢ Goto 1

❖ Example:

 ry  1/3 1/3 5/12 9/24  6/15

 ra = 1/3 3/6 1/3 11/24 … 6/15

 rm  1/3 1/6 3/12 1/6  3/15

y

a m

y a m

y ½ ½ 0

a ½ 0 1

m 0 ½ 0

ry  = ry /2 + ra /2

ra  = ry /2 + rm

rm = ra /2

Iteration 0, 1, 2, …
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Random Walk Interpretation

❖ Imagine a random web surfer:

➢ At any time 𝒕, surfer is on some page 𝒊

➢ At time 𝒕 + 𝟏, the surfer follows an 

out-link from 𝒊 uniformly at random

➢ Ends up on some page 𝒋 linked from 𝒊

➢ Process repeats indefinitely

❖ Let:

➢ 𝒑(𝒕) … vector whose 𝒊th coordinate is the 

prob. that the surfer is at page 𝒊 at time 𝒕

➢ So, 𝒑(𝒕) is a probability distribution over pages


→

=
ji

i
j

r
r

(i)dout

j

i1 i2 i3
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The Stationary Distribution

❖ Where is the surfer at time t+1?

➢ Follows a link uniformly at random

  𝒑 𝒕 + 𝟏 =  𝑴 ⋅ 𝒑(𝒕)

❖ Suppose the random walk reaches a state 𝒑 𝒕 + 𝟏 =  𝑴 ⋅ 𝒑(𝒕)  =
 𝒑(𝒕)

then 𝒑(𝒕) is stationary distribution of a random walk

❖ Our original rank vector 𝒓 satisfies  𝒓 =  𝑴 ⋅ 𝒓

➢ So, 𝒓 is a stationary distribution for 

the random walk

)(M)1( tptp =+

j

i1 i2 i3



3.63

Existence and Uniqueness

❖ A central result from the theory of random walks (a.k.a. Markov 

processes):

For graphs that satisfy certain conditions, 
the stationary distribution is unique and 

eventually will be reached no matter what the 
initial probability distribution at time t = 0
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PageRank: Two Questions

❖ Does this converge?

❖ Does it converge to what we want?


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Does this converge?

❖ Example:

  ra  1 0 1 0 …

  rb  0 1 0 1 …

ba 
→

+
=

ji

t

it

j

r
r

i

)(
)1(

d

Iteration 0, 1, 2, …
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Does it converge to what we want?

❖ Example:

  ra  1 0 0 0 

  rb  0 1 0 0

ba 
→

+
=

ji

t

it

j

r
r

i

)(
)1(

d

Iteration 0, 1, 2, …
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PageRank: Problems

2 problems:

❖ (1) Some pages are dead ends (have no out-links)

➢ Random walk has “nowhere” to go to

➢ Such pages cause importance to “leak out”

❖ (2) Spider traps: (all out-links are within the group)

➢ Random walked gets “stuck” in a trap

➢ And eventually spider traps absorb all importance

Dead end
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Problem: Spider Traps

❖ Power Iteration:

➢ Set 𝑟𝑗 = 1

➢ 𝑟𝑗 = σ𝑖→𝑗
𝑟𝑖

𝑑𝑖

 And iterate

❖ Example:

 ry  1/3 2/6 3/12 5/24  0

 ra = 1/3 1/6 2/12 3/24 … 0

 rm  1/3 3/6 7/12 16/24  1

Iteration 0, 1, 2, …

y

a m

y a m

y ½ ½ 0

a ½ 0 0

m 0 ½ 1

ry  = ry /2 + ra /2

ra  = ry /2

rm = ra /2 + rm

m is a spider trap

All the PageRank score gets “trapped” in node m.
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Solution: Teleport!

❖ The Google solution for spider traps: At each time step, the random 

surfer has two options

➢ With prob. , follow a link at random

➢ With prob. 1-, jump to some random page

➢ Common values for   are in the range 0.8 to 0.9

❖ Surfer will teleport out of spider trap within a few time steps

y

a m

y

a m
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Problem: Dead Ends

❖ Power Iteration:

➢ Set 𝑟𝑗 = 1

➢ 𝑟𝑗 = σ𝑖→𝑗
𝑟𝑖

𝑑𝑖

 And iterate

❖ Example:

 ry  1/3 2/6 3/12 5/24  0

 ra = 1/3 1/6 2/12 3/24 … 0

 rm  1/3 1/6 1/12 2/24  0

Iteration 0, 1, 2, …

Here the PageRank “leaks” out since the matrix is not stochastic.

y

a m

y a m

y ½ ½ 0

a ½ 0 0

m 0 ½ 0

ry  = ry /2 + ra /2

ra  = ry /2

rm = ra /2
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Solution: Always Teleport!

❖ Teleports: Follow random teleport links with probability 1.0 from dead-

ends

➢ Adjust matrix accordingly

y

a m

y a m

y ½ ½ ⅓

a ½ 0 ⅓

m 0 ½ ⅓

y a m

y ½ ½ 0

a ½ 0 0

m 0 ½ 0

y

a m
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Why Teleports Solve the Problem?

Why are dead-ends and spider traps a problem and why do 

teleports solve the problem?

❖ Spider-traps are not a problem, but with traps PageRank scores are 

not what we want

➢ Solution: Never get stuck in a spider trap by teleporting out of it in 

a finite number of steps

❖ Dead-ends are a problem

➢ The matrix is not column stochastic so our initial assumptions are 

not met

➢ Solution: Make matrix column stochastic by always teleporting 

when there is nowhere else to go
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Google’s Solution: Random Teleports

❖ Google’s solution that does it all:

At each step, random surfer has two options:

➢ With probability ,  follow a link at random

➢ With probability 1-, jump to some random page

❖ PageRank equation [Brin-Page, 98]

𝑟𝑗 = ෍

𝑖→𝑗

𝛽
𝑟𝑖

𝑑𝑖
+ (1 − 𝛽)

1

𝑁di … out-degree 

of node i

This formulation assumes that 𝑴 has no dead ends.  We can either 

preprocess matrix 𝑴 to remove all dead ends or explicitly follow random 

teleport links with probability 1.0 from dead-ends.
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The Google Matrix

❖ PageRank equation [Brin-Page, ‘98]

𝑟𝑗 = ෍

𝑖→𝑗

𝛽
𝑟𝑖

𝑑𝑖
+ (1 − 𝛽)

1

𝑁

❖ The Google Matrix A:

𝐴 = 𝛽 𝑀 + 1 − 𝛽
1

𝑁 𝑁×𝑁

❖ We have a recursive problem: 𝒓 = 𝑨 ⋅ 𝒓 

And the Power method still works!

❖ What is  ?

➢ In practice  =0.8,0.9 (make 5 steps on avg., jump)

[1/N]NxN…N by N matrix

where all entries are 1/N
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Random Teleports ( = 0.8)

y

a    =

m

1/3

1/3

1/3

0.33

0.20

0.46

0.24

0.20

0.52

0.26

0.18

0.56

7/33

  5/33

21/33

. . .

y

a
m

13/15

7/15

1/2 1/2   0

     1/2   0    0

      0   1/2   1

1/3 1/3 1/3

   1/3 1/3 1/3

   1/3 1/3 1/3

y   7/15  7/15   1/15

a   7/15  1/15   1/15

m  1/15  7/15  13/15

0.8 + 0.2

M [1/N]NxN

A
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Computing Page Rank

❖ Key step is matrix-vector multiplication

➢ rnew = A ∙ rold

❖ Easy if we have enough main memory to hold A, rold, rnew

❖ Say N = 1 billion pages

➢ We need 4 bytes for 

each entry (say)

➢ 2 billion entries for 

vectors, approx 8GB

➢ Matrix A has N2 entries

 1018 is a large number!

½   ½   0

 ½   0   0

0    ½   1

1/3 1/3 1/3

1/3 1/3 1/3

1/3 1/3 1/3

7/15  7/15   1/15

     7/15  1/15   1/15

     1/15  7/15  13/15

0.8 +0.2

A = ∙M + (1-) [1/N]NxN

=

A =
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Matrix Formulation

❖ Suppose there are N pages

❖ Consider page i, with di out-links

❖ We have Mji = 1/|di| when i → j 
    and Mji = 0 otherwise

❖ The random teleport is equivalent to:

➢ Adding a teleport link from i to every other page and setting 
transition probability to (1-)/N

➢ Reducing the probability of following each 
out-link from 1/|di| to /|di|

➢ Equivalent: Tax each page a fraction (1-) of its score and 
redistribute evenly 
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Rearranging the Equation

❖ 𝒓 = 𝑨 ⋅ 𝒓,   where 𝑨𝒋𝒊 = 𝜷 𝑴𝒋𝒊 +
𝟏−𝜷

𝑵

❖ 𝑟𝑗  = σi=1
𝑁 𝐴𝑗𝑖 ⋅ 𝑟𝑖

❖ 𝑟𝑗  = σ𝑖=1
𝑁 𝛽 𝑀𝑗𝑖 +

1−𝛽

𝑁
⋅ 𝑟𝑖

  = σi=1
𝑁 𝛽 𝑀𝑗𝑖 ⋅ 𝑟𝑖 +

1−𝛽

𝑁
σi=1

𝑁 𝑟𝑖

  = σi=1
𝑁 𝛽 𝑀𝑗𝑖 ⋅ 𝑟𝑖 +

1−𝛽

𝑁
            since σ𝑟𝑖 = 1

❖ So we get: 𝒓 = 𝜷 𝑴 ⋅ 𝒓 +
𝟏−𝜷

𝑵 𝑵

Note: Here we assumed M 

has no dead-ends [x]N … a vector  of length N with all entries x
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Sparse Matrix Formulation

❖ We just rearranged the PageRank equation

𝒓 = 𝜷𝑴 ⋅ 𝒓 +
𝟏 − 𝜷

𝑵
𝑵

 where [(1-)/N]N is a vector with all N entries (1-)/N

❖ M is a sparse matrix! (with no dead-ends)

➢ 10 links per node, approx 10N entries

❖ So in each iteration, we need to:

➢ Compute rnew =  M ∙ rold

➢ Add a constant value (1-)/N to each entry in rnew

 Note if M contains dead-ends then σ𝒋 𝒓𝒋
𝒏𝒆𝒘 < 𝟏 and 

we also have to renormalize rnew so that it sums to 1
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PageRank: The Complete Algorithm

❖ Input: Graph 𝑮 and parameter 𝜷

➢ Directed graph 𝑮 (can have spider traps and dead ends)

➢ Parameter 𝜷

❖ Output: PageRank vector 𝒓𝒏𝒆𝒘

➢ Set: 𝑟𝑗
𝑜𝑙𝑑  =

1

𝑁

➢ repeat until convergence: σ𝑗 𝑟𝑗
𝑛𝑒𝑤 − 𝑟𝑗

𝑜𝑙𝑑 > 𝜀

 ∀𝑗: 𝒓′𝒋
𝒏𝒆𝒘 = σ𝒊→𝒋 𝜷

𝒓𝒊
𝒐𝒍𝒅

𝒅𝒊
 

           𝒓′𝒋
𝒏𝒆𝒘 = 𝟎  if in-degree of 𝒋 is 0

 Now re-insert the leaked PageRank:

    ∀𝒋: 𝒓𝒋
𝒏𝒆𝒘 = 𝒓′

𝒋
𝒏𝒆𝒘

+
𝟏−𝑺

𝑵

 𝒓𝒐𝒍𝒅 = 𝒓𝒏𝒆𝒘

where: 𝑆 = σ𝑗 𝑟′𝑗
𝑛𝑒𝑤

If the graph has no dead-ends then the amount of leaked PageRank is 1-β. But since we have dead-ends 

the amount of leaked PageRank may be larger. We have to explicitly account for it by computing S.
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Sparse Matrix Encoding

❖ Encode sparse matrix using only nonzero entries

➢ Space proportional roughly to number of links

➢ Say 10N, or 4*10*1 billion = 40GB

➢ Still won’t fit in memory, but will fit on disk

0 3 1, 5, 7

1 5 17, 64, 113, 117, 245

2 2 13, 23

source

node degree destination nodes
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Basic Algorithm: Update Step

❖ Assume enough RAM to fit rnew into memory

➢ Store rold and matrix M on disk

❖ 1 step of power-iteration is:

0 3 1, 5, 6

1 4 17, 64, 113, 117

2 2 13, 23

source degree destination0
1

2

3
4

5

0
1

2

3
4

5

6

rnew rold

Initialize all entries of rnew = (1-) / N

For each page i (of out-degree di):

  Read into memory: i, di, dest1, …, destdi, rold(i)

  For j = 1…di

      rnew(destj) +=  rold(i) / di
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Analysis

❖ Assume enough RAM to fit rnew into memory

➢ Store rold and matrix M on disk

❖ In each iteration, we have to:

➢ Read rold and M

➢ Write rnew back to disk

➢ Cost per iteration of Power method:

= 2|r| + |M|

❖ Question:

➢ What if we could not even fit rnew in memory?

➢ Split rnew into blocks. Details ignored
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Some Problems with Page Rank

❖ Measures generic popularity of a page

➢ Biased against topic-specific authorities

➢ Solution: Topic-Specific (Personalized) PageRank (next)

❖ Uses a single measure of importance

➢ Other models of importance

➢ Solution: Hubs-and-Authorities
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PageRank in MapReduce
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PageRank Computation Review

❖ Properties of PageRank

➢ Can be computed iteratively

➢ Effects at each iteration are local

❖ Sketch of algorithm:

➢ Start with seed ri values

➢ Each page distributes ri “credit” to all pages it links to

➢ Each target page tj adds up “credit” from multiple in-bound links to 

compute rj

➢ Iterate until values converge
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Simplified PageRank

❖ First, tackle the simple case:

➢ No teleport

➢ No dead ends

❖ Then, factor in these complexities…

➢ How to deal with the teleport probability?

➢ How to deal with dead ends?
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Sample PageRank Iteration (1)
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Sample PageRank Iteration (2)
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PageRank in MapReduce

❖ One iteration of the PageRank algorithm involves taking an estimated 

PageRank vector r and computing the next estimate r′ by

𝒓 = 𝜷 𝑴 ⋅ 𝒓 +
𝟏 − 𝜷

𝑵
𝑵

❖ Mapper: input – a line containing node u, ru, a list of out-going 

neighbors of u

➢ For each neighbor v, emit(v, ru/deg(u))

➢ Emit (u, a list of out-going neighbors of u)

❖ Reducer: input – (node v, a list of values <ru/deg(u), …>)

➢ Aggregate the results according to the equation to compute r’v

➢ Emit node v, r’v, a list of out-going neighbors of v
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PageRank in MapReduce (One Iteration)

n5 [n1, n2, n3]n1 [n2, n4] n2 [n3, n5] n3 [n4] n4 [n5]

n2 n4 n3 n5 n1 n2 n3n4 n5

n2 n4n3 n5n1 n2 n3 n4 n5

n5 [n1, n2, n3]n1 [n2, n4] n2 [n3, n5] n3 [n4] n4 [n5]

Map

Reduce
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PageRank Pseudo-Code
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Complete PageRank

❖ Two additional complexities

➢ What is the proper treatment of dangling nodes?

➢ How do we factor in the random jump factor?

❖ Solution: 

➢ If a node’s adjacency list is empty, distribute its value to all nodes 

evenly.

 In mapper, for such a node i, emit (nid m, ri/N) for each node m 

in the graph

➢ Add the teleport value

 In reducer, M.PageRank =   * s + (1- ) / N 
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Graphs and MapReduce

❖ Graph algorithms typically involve:

➢ Performing computations at each node: based on node features, 

edge features, and local link structure

➢ Propagating computations: “traversing” the graph

❖ Generic recipe:

➢ Represent graphs as adjacency lists

➢ Perform local computations in mapper

➢ Pass along partial results via outlinks, keyed by destination node

➢ Perform aggregation in reducer on inlinks to a node

➢ Iterate until convergence: controlled by external “driver”

➢ Don’t forget to pass the graph structure between iterations
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Issues with MapReduce on Graph Processing

❖ MapReduce Does not support iterative graph computations: 

➢ External driver. Huge I/O incurs

➢ No mechanism to support global data structures that can be 

accessed and updated by all mappers and reducers

 Passing information is only possible within the local graph 

structure – through adjacency list

 Dijkstra's algorithm on a single machine: a global priority 

queue that guides the expansion of nodes

 Dijkstra‘s algorithm in Hadoop, no such queue available. Do 

some “wasted” computation instead

❖ MapReduce algorithms are often impractical on large, dense graphs.

➢ The amount of intermediate data generated is on the order of the 

number of edges. 

➢ For dense graphs, MapReduce running time would be dominated 

by copying intermediate data across the network. 
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Iterative MapReduce

❖ Only a subset of data needs computation:

Iterations

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data
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CPU 2

CPU 3

Data

Data
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Data

Data

Data

Data

CPU 1

CPU 2

CPU 3

Data

Data

Data

Data

Data

Data
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Iterative MapReduce

❖ System is not optimized for iteration:

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

CPU 1

CPU 2

CPU 3
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CPU 3
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Better Partitioning

❖ Default: hash partitioning

➢ Randomly assign nodes to partitions

❖ Observation: many graphs exhibit local structure

➢ E.g., communities in social networks

➢ Better partitioning creates more opportunities for local aggregation

❖ Unfortunately, partitioning is hard!

➢ Sometimes, chick-and-egg… 

➢ But cheap heuristics sometimes available

➢ For webgraphs: range partition on domain-sorted URLs
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