COMP9313: Big Data Management

Lecturer: Xin Cao Course web site: http://www.cse.unsw.edu.au/~cs9313/

Chapter 8.1: Graph Data Management

Graph Data Processing in MapReduce

What's a Graph?

- G = (V,E), where
 - V represents the set of vertices (nodes)
 - E represents the set of edges (links)
 - > Both vertices and edges may contain additional information
- Different types of graphs:
 - Directed vs. undirected edges
 - Presence or absence of cycles
- Graphs are everywhere:
 - Hyperlink structure of the Web
 - > Physical structure of computers on the Internet
 - Interstate highway system
 - Social networks

Graph Analytics

- General Graph
 - Count the number of nodes whose degree is equal to 5
 - > Find the diameter of the graphs
- Web Graph
 - Rank each webpage in the web graph or each user in the twitter graph using PageRank, or other centrality measure
- Transportation Network
 - Return the shortest or cheapest flight/road from one city to another
- Social Network
 - > Detect a group of users who have similar interests
- Financial Network
 - Find the path connecting two suspicious transactions;

*****

Graphs and MapReduce

- Graph algorithms typically involve:
 - Performing computations at each node: based on node features, edge features, and local link structure
 - Propagating computations: "traversing" the graph
- Key questions:
 - How do you represent graph data in MapReduce?
 - How do you traverse a graph in MapReduce?

Representing Graphs

- Adjacency Matrices: Represent a graph as an n x n square matrix M
 - > n = |V|
 - > $M_{ij} = 1$ means a link from node *i* to *j*

	1	2	3	4
1	0	1	0	1
2	1	0	1	1
3	1	0	0	0
4	1	0	1	0

Adjacency Matrices: Critique

- Advantages:
 - > Amenable to mathematical manipulation
 - Iteration over rows and columns corresponds to computations on outlinks and inlinks
- Disadvantages:
 - > Lots of zeros for sparse matrices
 - Lots of wasted space

Representing Graphs

Adjacency Lists: Take adjacency matrices... and throw away all the zeros

Adjacency Lists: Critique

- Advantages:
 - Much more compact representation
 - Easy to compute over outlinks
- Disadvantages:
 - > Much more difficult to compute over inlinks

Single-Source Shortest Path

Single-Source Shortest Path (SSSP)

- Problem: find shortest path from a source node to one or more target nodes
 - > Shortest might also mean lowest weight or cost
- Dijkstra's Algorithm:
 - For a given source node in the graph, the algorithm finds the shortest path between that node and every other

Dijkstra's Algorithm

1:	DIJKSTRA(G, w, s)
2:	$d[s] \leftarrow 0$
3:	for all vertex $v \in V$ do
4:	$d[v] \leftarrow \infty$
5:	$Q \leftarrow \{V\}$
6:	$\mathbf{while} \ Q \neq \emptyset \ \mathbf{do}$
7:	$u \leftarrow \text{ExtractMin}(Q)$
8:	for all vertex $v \in u$. AdjacencyList do
9:	if $d[v] > d[u] + w(u, v)$ then
0:	$d[v] \leftarrow d[u] + w(u, v)$

Example from CLR

Finish!

Single Source Shortest Path

- Problem: find shortest path from a source node to one or more target nodes
 - Shortest might also mean lowest weight or cost
- Single processor machine: Dijkstra's Algorithm
- MapReduce: parallel Breadth-First Search (BFS)

Finding the Shortest Path

- Consider simple case of equal edge weights
- Solution to the problem can be defined inductively
- Here's the intuition:
 - > Define: *b* is reachable from *a* if *b* is on adjacency list of *a*
 - > DISTANCETO(s) = 0
 - For all nodes p reachable from s, DISTANCETO(p) = 1
 - ► For all nodes *n* reachable from some other set of nodes *M*, DISTANCETO(*n*) = 1 + min(DISTANCETO(*m*), $m \in M$)

Visualizing Parallel BFS

From Intuition to Algorithm

- Data representation:
 - > Key: node *n*
 - Value: d (distance from start), adjacency list (list of nodes reachable from n)
 - > Initialization: for all nodes except for start node, $d = \infty$
- Mapper:
 - > \forall *m* ∈ adjacency list: emit (*m*, *d* + 1)
- Sort/Shuffle
 - Groups distances by reachable nodes
- Reducer:
 - > Selects minimum distance path for each reachable node
 - Additional bookkeeping needed to keep track of actual path

Multiple Iterations Needed

- Each MapReduce iteration advances the "known frontier" by one hop
 - Subsequent iterations include more and more reachable nodes as frontier expands
 - The input of Mapper is the output of Reducer in the previous iteration
 - Multiple iterations are needed to explore entire graph
- Preserving graph structure:
 - Problem: Where did the adjacency list go?
 - > Solution: mapper emits (*n*, adjacency list) as well

BFS Pseudo-Code

- Equal Edge Weights (how to deal with weighted edges?)
- Only distances, no paths stored (how to obtain paths?)

```
class Mapper

method Map(nid n, node N)

d \leftarrow N.Distance

Emit(nid n,N.AdjacencyList) //Pass along graph structure

for all nodeid m \in N.AdjacencyList do

Emit(nid m, d+1) //Emit distances to reachable nodes
```

```
class Reducer

method Reduce(nid m, [d1, d2, . . .])

d_{min} \leftarrow \infty

M \leftarrow \emptyset

for all d \in counts [d1, d2, . . .] do

if IsNode(d) then

M.AdjacencyList \leftarrow d //Recover graph structure

else if d < d_{min} then //Look for shorter distance

d_{min} \leftarrow d

M.Distance \leftarrow d_{min} //Update shortest distance

Emit(nid m, node M)
```

Stopping Criterion

- How many iterations are needed in parallel BFS (equal edge weight case)?
- Convince yourself: when a node is first "discovered", we've found the shortest path
- Now answer the question...
 - The diameter of the graph, or the greatest distance between any pair of nodes
 - Six degrees of separation?
 - If this is indeed true, then parallel breadth-first search on the global social network would take at most six MapReduce iterations.

Implementation in MapReduce

- The actual checking of the termination condition must occur outside of MapReduce.
- The driver (main) checks to see if a termination condition has been met, and if not, repeats.
- Hadoop provides a lightweight API called "counters".
 - It can be used for counting events that occur during execution, e.g., number of corrupt records, number of times a certain condition is met, or anything that the programmer desires.
 - Counters can be designed to count the number of nodes that have distances of ∞ at the end of the job, the driver program can access the final counter value and check to see if another iteration is necessary.

Chained MapReduce Job (Java)

In the main function, you can configure like:

```
String input = IN;
String output = OUT + System.nanoTime();
boolean isdone = false;
while (isdone == false) {
           Job job = Job.getInstance(conf, "traverse job");
           //configure your jobs here such as mapper and reducer classes
           FileInputFormat.addInputPath(job, new Path(input));
           FileOutputFormat.setOutputPath(job, new Path(output));
           job.waitForCompletion(true);
                                             //start the job
           Counters counters = job.getCounters();
           Counter counter = counters.findCounter(MY_COUNTERS.REACHED);
           if(counter.getValue() == 0){
                                            //use the counter to check the termination
                      isdone = true;
           input = output;
                                             //make the current output as the next input
           output = OUT + System.nanoTime();
}
```

https://github.com/himank/Graph-Algorithm-MapReduce/blob/master/src/DijikstraAlgo.java

MapReduce Counters

- Instrument Job's metrics
 - Gather statistics
 - Quality control confirm what was expected.
 - E.g., count invalid records
 - Application-level statistics.
 - Problem diagnostics
 - > Try to use counters for gathering statistics instead of log files
- Framework provides a set of built-in metrics
 - > For example, bytes processed for input and output
- User can create new counters
 - Number of records consumed
 - Number of errors or warnings

Built-in Counters

- Hadoop maintains some built-in counters for every job.
- Several groups for built-in counters
 - File System Counters number of bytes read and written
 - Job Counters documents number of map and reduce tasks launched, number of failed tasks
 - Map-Reduce Task Counters- mapper, reducer, combiner input and output records counts, time and memory statistics

User-Defined Counters

- You can create your own counters
 - Counters are defined by a Java enum
 - serves to group related counters

```
▶ E.g.,
```

```
enum Temperature {
MISSING,
MALFORMED
}
```

- Increment counters in Reducer and/or Mapper classes
 - Counters are global: Framework accurately sums up counts across all maps and reduces to produce a grand total at the end of the job

Implement User-Defined Counters

- Retrieve Counter from Context object
 - Framework injects Context object into map and reduce methods
- Increment Counter's value
 - Can increment by 1 or more

```
parser.parse(value);
if (parser.isValidTemperature()) {
    int airTemperature = parser.getAirTemperature();
    context.write(new Text(parser.getYear()),
        new IntWritable(airTemperature));
} else if (parser.isMalformedTemperature()) {
    System.err.println("Ignoring possibly corrupt input: " + value);
    context getCounter(Temperature.MALFORMED) increment(1);
} else if (parser.isMissingTemperature()) {
    context.getCounter(Temperature.MISSING).increment(1);
}
```

Implement User-Defined Counters

- Get Counters from a finished job in Java
 - > Counter counters = job.getCounters()
- Get the counter according to name
 - Counter c1 = counters.findCounter(Temperature.MISSING)
- Enumerate all counters after job is completed

```
for (CounterGroup group : counters) {
    System.out.println("* Counter Group: " + group.getDisplayName() + " (" +
    group.getName() + ")");
    System.out.println(" number of counters in this group: " + group.size());
    for (Counter counter : group) {
        System.out.println(" - " + counter.getDisplayName() + ": " +
            counter.getName() + ": "+counter.getValue());
    }
}
```

Counters in MRJob

- A counter has a group, a name, and an integer value. Hadoop itself tracks a few counters automatically. mrjob prints your job's counters to the command line when your job finishes, and they are available to the runner object if you invoke it programmatically.
- To increment a counter from anywhere in your job, use the increment_counter() method:

```
class MRCountingJob(MRJob):
    def steps(self):
        # 3 steps so we can check behavior of counters for multiple steps
        return [MRStep(self.mapper),
            MRStep(self.mapper),
            MRStep(self.mapper)]
    def mapper(self, _, value):
        self.increment_counter('group', 'counter_name', 1)
        yield _, value
```

- At the end of your job, you'll get the counter's total value.
- You can also read the counters by using "runner.counters()" <u>https://mrjob.readthedocs.io/en/latest/guides/runners.html</u>

How to Find the Shortest Path?

- The parallel breadth-first search algorithm only finds the shortest distances.
- Store "back-pointers" at each node, as with Dijkstra's algorithm
 - > Not efficient to recover the path from the back-pointers
- A simpler approach is to emit paths along with distances in the mapper, so that each node will have its shortest path easily accessible at all times
 - > The additional space requirement is acceptable

BFS Pseudo-Code (Weighted Edges)

- The adjacency lists, which were previously lists of node ids, must now encode the edge distances as well
 - Positive weights!
- In line 6 of the mapper code, instead of emitting d + 1 as the value, we must now emit d + w, where w is the edge distance
- The termination behaviour is very different!
 - How many iterations are needed in parallel BFS (positive edge weight case)?
 - Convince yourself: when a pode is first "discovered", we've found the shortest path of true
Additional Complexities

- Assume that *p* is the current processed node
 - In the current iteration, we just "discovered" node r for the very first time.
 - We've already discovered the shortest distance to node p, and that the shortest distance to r so far goes through p
 - > Is s->p->r the shortest path from s to r?
- The shortest path from source s to node r may go outside the current search frontier
 - > It is possible that $p \rightarrow q \rightarrow r$ is shorter than $p \rightarrow r!$
 - We will not find the shortest distance to r until the search frontier expands to cover q.

How Many Iterations Are Needed?

- In the worst case, we might need as many iterations as there are nodes in the graph minus one
 - A sample graph that elicits worst-case behaviour for parallel breadth-first search.
 - Eight iterations are required to discover shortest distances to all nodes from n₁.

Example (only distances)

- Input file:
 - s --> 0 | n1: 10, n2: 5
- n1 --> ∞ | n2: 2, n3:1
- n2 --> ∞ | n1: 3, n3:9, n4:2
- n3 --> ∞ | n4:4
- n4 --> ∞ | s:7, n3:6

✤ Map:

Read s --> 0 | n1: 10, n2: 5

Emit: (n1, 10), (n2, 5), and the adjacency list (s, n1: 10, n2: 5)

The other lists will also be read and emit, but they do not contribute, and thus ignored

Reduce:

Receives: (n1, 10), (n2, 5), (s, <0, (n1: 10, n2: 5)>)

The adjacency list of each node will also be received, ignored in example

Emit:

s --> 0 | n1: 10, n2: 5 n1 --> 10 | n2: 2, n3:1 n2 --> 5 | n1: 3, n3:9, n4:2

Map:
 Read: n1 --> 10 | n2: 2, n3:1
 Emit: (n2, 12), (n3, 11), (n1, <10, (n2: 2, n3:1)>)
 Read: n2 --> 5 | n1: 3, n3:9, n4:2
 Emit: (n1, 8), (n3, 14), (n4, 7), (n2, <5, (n1: 3, n3:9, n4:2)>)
 Ignore the processing of the other lists

Reduce:

Receives: (n1, (8, <10, (n2: 2, n3:1)>)), (n2, (12, <5, n1: 3, n3:9, n4:2>)), (n3, (11, 14)), (n4, 7)

Emit:

n1 --> 8 | n2: 2, n3:1 n2 --> 5 | n1: 3, n3:9, n4:2 n3 --> 11 | n4:4

n4 --> 7 | s:7, n3:6

Map: Read: n1 --> 8 | n2: 2, n3:1 Emit: (n2, 10), (n3, 9), (n1, <8, (n2: 2, n3:1)>) Read: n2 --> 5 | n1: 3, n3:9, n4:2 (Again!) Emit: (n1, 8), (n3, 14), (n4, 7), (n2, <5, (n1: 3, n3:9, n4:2)>) Read: n3 --> 11 | n4:4 Emit: (n4, 15), (n3, <11, (n4:4)>) 1 1 Read: n4 --> 7 | s:7, n3:6 Emit: (s, 14), (n3, 13), (n4, <7, (s:7, n3:6)>) 10 Reduce: 2 3 9 S Emit: n1 --> 8 | n2: 2, n3:1 2 n2 --> 5 | n1: 3, n3:9, n4:2 2 n3 --> <mark>9</mark> | n4:4 n4 --> 7 | s:7, n3:6

4

7

6

4

✤ Map:

Read: n1 --> 8 | n2: 2, n3:1 (Again!)

Emit: (n2, 10), (n3, 9), (n1, <8, (n2: 2, n3:1)>)

Read: n2 --> 5 | n1: 3, n3:9, n4:2 (Again!)

Emit: (n1, 8), (n3, 14), (n4, 7), (n2, <5, (n1: 3, n3:9, n4:2)>)

Read: n3 --> 9 | n4:4

Emit: (n4, 13), (n3, <9, (n4:4)>)

Read: n4 --> 7 | s:7, n3:6 (Again!)

Emit: (s, 14), (n3, 13), (n4, <7, (s:7, n3:6)>)

Reduce:

Emit:

n1 --> 8 | n2: 2, n3:1

n2 --> 5 | n1: 3, n3:9, n4:2

n3 --> 9 | n4:4

n4 --> 7 | s:7, n3:6

In order to avoid duplicated computations, you can use a status value to indicate whether the distance of the node has been modified in the previous iteration.

No updates. Terminate.

Comparison to Dijkstra

- Dijkstra's algorithm is more efficient
 - At any step it only pursues edges from the minimum-cost path inside the frontier
- MapReduce explores all paths in parallel
 - Lots of "waste"
 - Useful work is only done at the "frontier"
- Why can't we do better using MapReduce?

Web as a Directed Graph

- Web as a directed graph:
 - Nodes: Webpages
 - > Edges: Hyperlinks

Broad Question

- How to organize the Web?
- First try: Human curated Web directories
 - > Yahoo, LookSmart, etc.
- Second try: Web Search
 - Information Retrieval investigates:
 Find relevant docs in a small and trusted set
 - Newspaper articles, Patents, etc.

- But: Web is huge, full of untrusted documents, random things, web spam, etc.
- What is the "best" answer to query "newspaper"?
 - No single right answer

Ranking Nodes on the Graph

- All web pages are not equally "important"
 - http://xxx.github.io/ vs. http://www.unsw.edu.au/
- There is large diversity in the web-graph node connectivity. Let's rank the pages by the link structure!

Link Analysis Algorithms

- We will cover the following Link Analysis approaches for computing importance of nodes in a graph:
 - > Page Rank
 - Topic-Specific (Personalized) Page Rank
 - > HITS
 - >

Links as Votes

- Idea: Links as votes
 - Page is more important if it has more links
 - In-coming links? Out-going links?
- Think of in-links as votes:
 - http://www.unsw.edu.au/ has 23,400 in-links
 - http://xxx.github.io/ has 1 in-link
- Are all in-links equal?
 - Links from important pages count more
 - Recursive question!

Example: PageRank Scores

Simple Recursive Formulation

Each link's vote is proportional to the importance of its source page

- If page **j** with importance r_i has **n** out-links, each link gets r_i / n votes
- Page js own importance is the sum of the votes on its in-links

PageRank: The "Flow" Model

- A "vote" from an important page is worth more
- A page is important if it is pointed to by other important pages
- Define a "rank" r_i for page j

$$r_j = \sum_{i \to j} \frac{r_i}{d_i}$$

 d_i ... out-degree of node i

"Flow" equations:

$$r_{y} = r_{y}/2 + r_{a}/2$$
$$r_{a} = r_{y}/2 + r_{m}$$
$$r_{m} = r_{a}/2$$

Solving the Flow Equations

- 3 equations, 3 unknowns, no constants
 - No unique solution
 - > All solutions equivalent modulo the scale factor

Flow equations: $r_y = r_y/2 + r_a/2$ $r_a = r_y/2 + r_m$ $r_m = r_a/2$

Additional constraint forces uniqueness:

$$\succ$$
 $r_y + r_a + r_m = 1$

> Solution:
$$r_y = \frac{2}{5}$$
, $r_a = \frac{2}{5}$, $r_m = \frac{1}{5}$

- Gaussian elimination method works for small examples, but we need a better method for large web-size graphs
- We need a new formulation!

PageRank: Matrix Formulation

- Stochastic adjacency matrix M
 - > Let page *i* has d_i out-links

> If
$$i \to j$$
, then $M_{ji} = \frac{1}{d_i}$ else $M_{ji} = 0$

- *M* is a column stochastic matrix
 - Columns sum to 1
- Rank vector r: vector with an entry per page
 - \succ r_i is the importance score of page *i*
 - $\succ \sum_i r_i = 1$
- The flow equations can be written

$$r = M \cdot r$$

Example

Remember the flow equation:

$$\dot{r}_j = \sum_{i \to j} \frac{r_i}{d_i}$$

Flow equation in the matrix form

 $M \cdot r = r$

> Suppose page *i* links to 3 pages, including *j*

Eigenvector Formulation

The flow equations can be written

$r = M \cdot r$

- So the rank vector r is an eigenvector of the stochastic web matrix
 - In fact, its first or principal eigenvector, with corresponding eigenvalue 1
 - Largest eigenvalue of *M* is 1 since *M* is column stochastic (with non-negative entries)
 - We know r is unit length and each column of M sums to one, so $Mr \leq 1$
- We can now efficiently solve for r!
 - > The method is called Power iteration

NOTE: *x* is an eigenvector with the corresponding eigenvalue λ if: $Ax = \lambda x$

Example: Flow Equations & M

 $r = M \cdot r$

$$\begin{array}{c} y \\ a \\ m \end{array} = \begin{array}{ccc} \frac{1/2}{1/2} & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 & 1 \\ 0 & \frac{1}{2} & 0 \end{array} \begin{array}{c} y \\ a \\ m \end{array}$$

 $r_{y} = r_{y}/2 + r_{a}/2$ $r_{a} = r_{y}/2 + r_{m}$ $r_{m} = r_{a}/2$

Power Iteration Method

- Given a web graph with n nodes, where the nodes are pages and edges are hyperlinks
- Power iteration: a simple iterative scheme
 - > Suppose there are *N* web pages
 - > Initialize: $\mathbf{r}^{(0)} = [1/N, ..., 1/N]^{T}$
 - > Iterate: $\mathbf{r}^{(t+1)} = \mathbf{M} \cdot \mathbf{r}^{(t)}$
 - > Stop when $|\mathbf{r}^{(t+1)} \mathbf{r}^{(t)}|_1 < \varepsilon$

d_i out-degree of node i

 $|\mathbf{x}|_1 = \sum_{1 \le i \le N} |x_i|$ is the L₁ norm Can use any other vector norm, e.g., Euclidean

PageRank: How to solve?

Iteration 0, 1, 2, ...

Random Walk Interpretation

Imagine a random web surfer:

- At any time t, surfer is on some page i
- At time t + 1, the surfer follows an out-link from i uniformly at random
- Ends up on some page j linked from i
- Process repeats indefinitely
- Let:
 - *p*(*t*) ... vector whose *i*th coordinate is the prob. that the surfer is at page *i* at time *t*
 - > So, p(t) is a probability distribution over pages

The Stationary Distribution

✤ Where is the surfer at time *t*+1?

> Follows a link uniformly at random

 $p(t+1) = M \cdot p(t)$

Suppose the random walk reaches a state $p(t+1) = M \cdot p(t) = p(t)$

then p(t) is stationary distribution of a random walk

- Our original rank vector r satisfies $r = M \cdot r$
 - So, r is a stationary distribution for the random walk

Existence and Uniqueness

A central result from the theory of random walks (a.k.a. Markov processes):

For graphs that satisfy **certain conditions**, the **stationary distribution is unique** and eventually will be reached no matter what the initial probability distribution at time **t = 0**

PageRank: Two Questions

- Does this converge?
- Does it converge to what we want?

Does this converge?

Iteration 0, 1, 2, ...

Does it converge to what we want?

Iteration 0, 1, 2, ...

PageRank: Problems

2 problems:

- (1) Some pages are dead ends (have no out-links)
 - Random walk has "nowhere" to go to
 - Such pages cause importance to "leak out"

- (2) Spider traps: (all out-links are within the group)
 - Random walked gets "stuck" in a trap
 - > And eventually spider traps absorb all importance

Problem: Spider Traps

Iteration 0, 1, 2, ...

All the PageRank score gets "trapped" in node m.

Solution: Teleport!

The Google solution for spider traps: At each time step, the random surfer has two options

- > With prob. β , follow a link at random
- > With prob. **1-** β , jump to some random page
- > Common values for β are in the range 0.8 to 0.9
- Surfer will teleport out of spider trap within a few time steps

Problem: Dead Ends

Here the PageRank "leaks" out since the matrix is not stochastic.

Solution: Always Teleport!

- Teleports: Follow random teleport links with probability 1.0 from deadends
 - > Adjust matrix accordingly

Why Teleports Solve the Problem?

Why are dead-ends and spider traps a problem and why do teleports solve the problem?

- Spider-traps are not a problem, but with traps PageRank scores are not what we want
 - Solution: Never get stuck in a spider trap by teleporting out of it in a finite number of steps
- Dead-ends are a problem
 - The matrix is not column stochastic so our initial assumptions are not met
 - Solution: Make matrix column stochastic by always teleporting when there is nowhere else to go
Google's Solution: Random Teleports

✤ Google's solution that does it all:

At each step, random surfer has two options:

- > With probability β , follow a link at random
- > With probability $1-\beta$, jump to some random page

This formulation assumes that M has no dead ends. We can either preprocess matrix M to remove all dead ends or explicitly follow random teleport links with probability 1.0 from dead-ends.

The Google Matrix

PageRank equation [Brin-Page, '98]

$$r_j = \sum_{i \to j} \beta \frac{r_i}{d_i} + (1 - \beta) \frac{1}{N}$$

The Google Matrix A:

$$A = \beta M + (1 - \beta) \left[\frac{1}{N}\right]_{N \times N}$$

 $[1/N]_{NxN}$...N by N matrix where all entries are 1/N

- ✤ We have a recursive problem: r = A · r And the Power method still works!
- What is β ?
 - > In practice $\beta = 0.8, 0.9$ (make 5 steps on avg., jump)

Random Teleports ($\beta = 0.8$)

У	1/3	0.33	0.24	0.26		7/33
a =	1/3	0.20	0.20	0.18	• • •	5/33
m	1/3	0.46	0.52	0.56		21/33

Computing Page Rank

Key step is matrix-vector multiplication

 \succ **r**^{new} = **A** · **r**^{old}

- Easy if we have enough main memory to hold A, r^{old}, r^{new}
- Say N = 1 billion pages
 - We need 4 bytes for each entry (say)
 - 2 billion entries for vectors, approx 8GB
 - Matrix A has N² entries
 - ▶ 10¹⁸ is a large number!

 $\mathbf{A} = \beta \cdot \mathbf{M} + (1 - \beta) [1/N]_{N \times N}$ $\mathbf{A} = 0.8 \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{2} & 1 \end{bmatrix} + 0.2 \begin{bmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix}$ $= \begin{bmatrix} \frac{7}{15} & \frac{7}{15} & \frac{1}{15} \\ \frac{7}{15} & \frac{1}{15} & \frac{1}{15} \\ \frac{1}{15} & \frac{7}{15} & \frac{1}{3} \end{bmatrix}$

Matrix Formulation

- Suppose there are *N* pages
- Consider page *i*, with *d_i* out-links
- ♦ We have $M_{ji} = 1/|d_i|$ when $i \rightarrow j$ and $M_{ji} = 0$ otherwise
- The random teleport is equivalent to:
 - Adding a teleport link from *i* to every other page and setting transition probability to (1-β)/N
 - Reducing the probability of following each out-link from 1/|d_i| to β/|d_i|
 - > Equivalent: Tax each page a fraction $(1-\beta)$ of its score and redistribute evenly

Rearranging the Equation

Note: Here we assumed **M** has no dead-ends

 $[x]_N \dots$ a vector of length N with all entries x

Sparse Matrix Formulation

• We just rearranged the PageRank equation $r = \beta M \cdot r + \left[\frac{1-\beta}{N}\right]_{N}$

• where $[(1-\beta)/N]_N$ is a vector with all **N** entries $(1-\beta)/N$

- M is a sparse matrix! (with no dead-ends)
 - > 10 links per node, approx 10N entries
- So in each iteration, we need to:
 - > Compute $\mathbf{r}^{\text{new}} = \beta \mathbf{M} \cdot \mathbf{r}^{\text{old}}$
 - > Add a constant value (1- β)/N to each entry in r^{new}
 - ▶ Note if M contains dead-ends then $\sum_j r_j^{new} < 1$ and we also have to renormalize r^{new} so that it sums to 1

PageRank: The Complete Algorithm

• Input: Graph G and parameter β

- Directed graph G (can have spider traps and dead ends)
- > Parameter β
- ✤ Output: PageRank vector r^{new}

Set:
$$r_j^{old} = \frac{1}{N}$$
repeat until convergence: $\sum_j |r_j^{new} - r_j^{old}| > \varepsilon$
 $\forall j: r'_j^{new} = \sum_{i \to j} \beta \frac{r_i^{old}}{d_i}$
 $r'_j^{new} = 0$ if in-degree of j is 0
Now re-insert the leaked PageRank:
 $\forall j: r_j^{new} = r'_j^{new} + \frac{1-S}{N}$ where: $S = \sum_j r'_j^{new}$
 $r^{old} = r^{new}$

If the graph has no dead-ends then the amount of leaked PageRank is $1-\beta$. But since we have dead-ends the amount of leaked PageRank may be larger. We have to explicitly account for it by computing **S**.

Sparse Matrix Encoding

Encode sparse matrix using only nonzero entries

- Space proportional roughly to number of links
- Say 10N, or 4*10*1 billion = 40GB
- > Still won't fit in memory, but will fit on disk

source node	degree	destination nodes
0	3	1, 5, 7
1	5	17, 64, 113, 117, 245
2	2	13, 23

Basic Algorithm: Update Step

Assume enough RAM to fit *r^{new}* into memory

- > Store *r*^{old} and matrix **M** on disk
- 1 step of power-iteration is:

Initialize all entries of $r^{new} = (1-\beta) / N$ For each page *i* (of out-degree d_i): Read into memory: *i*, d_i , $dest_1$, ..., $dest_{di}$, $r^{old}(i)$ For $j = 1...d_i$ $r^{new}(dest_i) += \beta r^{old}(i) / d_i$

Analysis

- Assume enough RAM to fit *r^{new}* into memory
 - > Store *r*^{old} and matrix *M* on disk
- In each iteration, we have to:
 - ➢ Read r^{old} and M
 - > Write *r*^{new} back to disk
 - Cost per iteration of Power method:
 = 2|r| + |M|
- Question:
 - > What if we could not even fit *r*^{new} in memory?
 - > Split *r*^{new} into blocks. Details ignored

Some Problems with Page Rank

Measures generic popularity of a page

- Biased against topic-specific authorities
- Solution: Topic-Specific (Personalized) PageRank (next)
- ✤ Uses a single measure of importance
 - > Other models of importance
 - Solution: Hubs-and-Authorities

PageRank in MapReduce

PageRank Computation Review

- Properties of PageRank
 - Can be computed iteratively
 - Effects at each iteration are local
- Sketch of algorithm:
 - > Start with seed r_i values
 - > Each page distributes r_i "credit" to all pages it links to
 - > Each target page t_j adds up "credit" from multiple in-bound links to compute r_j
 - Iterate until values converge

Simplified PageRank

- First, tackle the simple case:
 - No teleport
 - No dead ends
- Then, factor in these complexities...
 - > How to deal with the teleport probability?
 - How to deal with dead ends?

Sample PageRank Iteration (1)

Sample PageRank Iteration (2)

PageRank in MapReduce

 One iteration of the PageRank algorithm involves taking an estimated PageRank vector r and computing the next estimate r' by

$$r = \beta M \cdot r + \left[\frac{1-\beta}{N}\right]_N$$

- Mapper: input a line containing node u, r_u, a list of out-going neighbors of u
 - > For each neighbor v, $emit(v, r_u/deg(u))$
 - Emit (u, a list of out-going neighbors of u)
- Reducer: input (node v, a list of values <r_u/deg(u), …>)
 - Aggregate the results according to the equation to compute r'v
 - > Emit node v, r'_v , a list of out-going neighbors of v

PageRank in MapReduce (One Iteration)

PageRank Pseudo-Code

Complete PageRank

- Two additional complexities
 - > What is the proper treatment of dangling nodes?
 - > How do we factor in the random jump factor?
- Solution:
 - If a node's adjacency list is empty, distribute its value to all nodes evenly.
 - In mapper, for such a node *i*, emit (nid m, *r*/N) for each node m in the graph
 - Add the teleport value
 - In reducer, M.PageRank = $\beta * s + (1 \beta) / N$

Graphs and MapReduce

- Graph algorithms typically involve:
 - Performing computations at each node: based on node features, edge features, and local link structure
 - Propagating computations: "traversing" the graph
- Generic recipe:
 - Represent graphs as adjacency lists
 - Perform local computations in mapper
 - > Pass along partial results via outlinks, keyed by destination node
 - Perform aggregation in reducer on inlinks to a node
 - > Iterate until convergence: controlled by external "driver"
 - Don't forget to pass the graph structure between iterations

Issues with MapReduce on Graph Processing

- MapReduce Does not support iterative graph computations:
 - External driver. Huge I/O incurs
 - No mechanism to support global data structures that can be accessed and updated by all mappers and reducers
 - Passing information is only possible within the local graph structure – through adjacency list
 - Dijkstra's algorithm on a single machine: a global priority queue that guides the expansion of nodes
 - Dijkstra's algorithm in Hadoop, no such queue available. Do some "wasted" computation instead
- MapReduce algorithms are often impractical on large, dense graphs.
 - The amount of intermediate data generated is on the order of the number of edges.
 - For dense graphs, MapReduce running time would be dominated by copying intermediate data across the network.

Iterative MapReduce

Only a subset of data needs computation:

Iterative MapReduce

Better Partitioning

- Default: hash partitioning
 - Randomly assign nodes to partitions
- Observation: many graphs exhibit local structure
 - > E.g., communities in social networks
 - > Better partitioning creates more opportunities for local aggregation
- Unfortunately, partitioning is hard!
 - Sometimes, chick-and-egg...
 - But cheap heuristics sometimes available
 - > For webgraphs: range partition on domain-sorted URLs

References

 Chapter 5, Data-Intensive Text Processing with MapReduce. Jimmy Lin and Chris Dyer. University of Maryland, College Park.

End of Chapter 8.1