COMP9313: Big Data Management

quﬁ?

Lecturer: Xin Cao

Course web site: http://www.cse.unsw.edu.au/~cs9313/

Chapter 8.1: Graph Data Management

Graph Data Processing in MapReduce

What'’s a Graph?

% G =(V,E), where
V represents the set of vertices (nodes)
E represents the set of edges (links)
Both vertices and edges may contain additional information
< Different types of graphs:
Directed vs. undirected edges
Presence or absence of cycles
< Graphs are everywhere:
Hyperlink structure of the Web
Physical structure of computers on the Internet
Interstate highway system
Social networks

3.4

Graph Analytics

General Graph
Count the number of nodes whose degree is equal to 5
Find the diameter of the graphs

Web Graph

Rank each webpage in the web graph or each user in the twitter
graph using PageRank, or other centrality measure

Transportation Network

Return the shortest or cheapest flight/road from one city to another
Social Network

Detect a group of users who have similar interests
Financial Network

Find the path connecting two suspicious transactions;

3.5

Graphs and MapReduce

< Graph algorithms typically involve:

Performing computations at each node: based on node features,
edge features, and local link structure

Propagating computations: “traversing” the graph
< Key questions:

How do you represent graph data in MapReduce?

How do you traverse a graph in MapReduce?

3.6

Representing Graphs

< Adjacency Matrices: Represent a graph as an n x n square matrix M

n=1V|
M; = 1 means a link from node i to |

B WOIDN

I E=1
O Ol O LI DN
RO | O W
O Ol k| k| B

3.7

Adjacency Matrices: Critique

< Advantages:
Amenable to mathematical manipulation

Iteration over rows and columns corresponds to computations on
outlinks and inlinks

< Disadvantages:
Lots of zeros for sparse matrices
Lots of wasted space

3.8

Representing Graphs

< Adjacency Lists: Take adjacency matrices... and throw away all the

Zeros

11234
1/0(1]0]1 1:2 4
21]0]1|1 2: 1,3, 4
3/1/0/0/0 3:1

4:1, 3
41/0l1]0

3.9

Adjacency Lists: Critique

< Advantages:
Much more compact representation
Easy to compute over outlinks
< Disadvantages:
Much more difficult to compute over inlinks

3.10

Single-Source Shortest Path

Single-Source Shortest Path (SSSP)

< Problem: find shortest path from a source node to one or more target
nodes

Shortest might also mean lowest weight or cost
< Dijkstra’s Algorithm:

For a given source node in the graph, the algorithm finds the
shortest path between that node and every other

3.12

Dijkstra’s Algorithm

DIJKSTRA(G, w, s)
dls] < 0O
for all vertex v € V do
d[v] < oo
Q—{V}
while Q # () do
u «— EXTRACTMIN(Q)
for all vertex v € u.ADJACENCYLIST do
if d[v] > d[u] + w(u,v) then
dv] — dlu] + w(u,v)

EdlE]

Dijkstra’s Algorithm Example

Dijkstra’s Algorithm Example

Dijkstra’s Algorithm Example

Dijkstra’s Algorithm Example

Dijkstra’s Algorithm Example

Dijkstra’s Algorithm Example

Finish!

Single Source Shortest Path

< Problem: find shortest path from a source node to one or more target
nodes

Shortest might also mean lowest weight or cost
< Single processor machine: Dijkstra’s Algorithm
< MapReduce: parallel Breadth-First Search (BFS)

3.20

Finding the Shortest Path

< Consider simple case of equal edge weights

< Solution to the problem can be defined inductively

< Here’s the intuition:
Define: b is reachable from a if b is on adjacency list of a
DISTANCETO(S) =0

For all nodes p reachable from s,
DISTANCETO(p) = 1

For all nodes n reachable from some other set of nodes M,
DISTANCETO(N) = 1 + min(DISTANCETO(m), m € M)

dl my

3.21

Visualizing Parallel BFS

*

From Intuition to Algorithm

Data representation:
Key: node n

Value: d (distance from start), adjacency list (list of nodes
reachable from n)

Initialization: for all nodes except for start node, d = «
Mapper:
vm e adjacency list: emit (m, d + 1)
Sort/Shuffle
Groups distances by reachable nodes
Reducer:
Selects minimum distance path for each reachable node
Additional bookkeeping needed to keep track of actual path

33

Multiple Iterations Needed

< Each MapReduce iteration advances the “known frontier” by one hop

Subsequent iterations include more and more reachable nodes as
frontier expands

The input of Mapper is the output of Reducer in the previous
iteration

Multiple iterations are needed to explore entire graph
< Preserving graph structure:

Problem: Where did the adjacency list go?
Solution: mapper emits (n, adjacency list) as well

3.24

BFS Pseudo-Code

< Equal Edge Weights (how to deal with weighted edges?)
< Only distances, no paths stored (how to obtain paths?)

class Mapper
method Map(nid n, node N)
d < N.Distance

Emit(nid n,N.AdjacencyList) /[Pass along graph structure
for all nodeid m € N.AdjacencyList do
Emit(nid m, d+1) /[Emit distances to reachable nodes

class Reducer
method Reduce(nid m, [d1, d2, .. .])
dmin(_°<J
M~ 0@
for all d € counts [d1, d2, .. .] do
if IsNode(d) then

M.AdjacencyList < d //Recover graph structure
else if d < d,;, then //Look for shorter distance
dmin —d
M.Distance « d;, //Update shortest distance

Emit(nid m, node M)

S

Stopping Criterion

How many iterations are needed in parallel BFS (equal edge weight
case)?
Convince yourself: when a node is first “discovered”, we’ve found the
shortest path
Now answer the question...
The diameter of the graph, or the greatest distance between any
pair of nodes
Six degrees of separation?

If this is indeed true, then parallel breadth-first search on the
global social network would take at most six MapReduce

iterations.

3.26

Implementation in MapReduce

The actual checking of the termination condition must occur outside of
MapReduce.

The driver (main) checks to see if a termination condition has been
met, and if not, repeats.

Hadoop provides a lightweight API called “counters”.

It can be used for counting events that occur during execution,
e.g., number of corrupt records, number of times a certain
condition is met, or anything that the programmer desires.

Counters can be designed to count the number of nodes that have
distances of « at the end of the job, the driver program can access
the final counter value and check to see if another iteration is
necessary.

3.27

Chained MapReduce Job (Java)

< In the main function, you can configure like:

String input = IN;
String output = OUT + System.nanoTime();
boolean isdone = false;
while (isdone == false) {
Job job = Job.getinstance(conf, "traverse job");
/Ilconfigure your jobs here such as mapper and reducer classes

FileInputFormat.addinputPath(job, new Path(input));
FileOutputFormat.setOutputPath(job, new Path(output));

job.waitForCompletion(true); //start the job

Counters counters = job.getCounters();
Counter counter = counters.findCounter(MY_COUNTERS.REACHED);

if(counter.getValue() == 01 //luse the counter to check the termination
isdone = true;

}

input = output; //make the current output as the next input

output = OUT + System.nanoTime();

3.28

https://github.com/himank/Graph-Algorithm-MapReduce/blob/master/src/DijikstraAlgo.java

MapReduce Counters

< Instrument Job’s metrics
Gather statistics
Quality control — confirm what was expected.
E.g., count invalid records
Application-level statistics.
Problem diagnostics
Try to use counters for gathering statistics instead of log files
< Framework provides a set of built-in metrics
For example, bytes processed for input and output
< User can create new counters
Number of records consumed
Number of errors or warnings

3.29

Built-in Counters

< Hadoop maintains some built-in counters for every job.
< Several groups for built-in counters
File System Counters — number of bytes read and written

Job Counters — documents number of map and reduce tasks
launched, number of failed tasks

Map-Reduce Task Counters— mapper, reducer, combiner input
and output records counts, time and memory statistics

3.30

User-Defined Counters

< You can create your own counters
Counters are defined by a Java enum
serves to group related counters

E.gQ.,
enum Temperature {
MISSING,
MALFORMED
}

< Increment counters in Reducer and/or Mapper classes

Counters are global: Framework accurately sums up counts
across all maps and reduces to produce a grand total at the end of
the job

SRS

Implement User-Defined Counters

< Retrieve Counter from Context object
Framework injects Context object into map and reduce methods

% Increment Counter’s value
Can increment by 1 or more

parser.parse({valus);
if (parser.isValidTemperature()}) {
int airTemperature = parser.getldirTemperature();
context.write(new Text({parser.getYear()),
new IntWritable(airTemperaturs));
¥} else if (parser.isMalformedTemperature()) {

System.err.println{"Ignoring possibly corrupt input: " + value);

context|getCounter{Temperature . MALFORMED)} | increment (1) ;

¥ else if (parser.isMissingTemperaturs())} {

context.getCounter{Temperature.MISSING). increment(1l);

3.32

Implement User-Defined Counters

< Get Counters from a finished job in Java
Counter counters = job.getCounters()

< Get the counter according to name
Counter c1 = counters.findCounter(Temperature.MISSING)

< Enumerate all counters after job is completed

for (CounterGroup group : counters) {
System.out.printin("* Counter Group: " + group.getDisplayName() + " (" +
group.getName() + ")");
System.out.printin(" number of counters in this group: " + group.size());
for (Counter counter : group) {
System.out.printin(" - " + counter.getDisplayName() + ": " +
counter.getName() + ": "+counter.getValue());

3833

Counters in MRJob

*

< A counter has a group, a name, and an integer value. Hadoop itself
tracks a few counters automatically. mrjob prints your job’s counters to
the command line when your job finishes, and they are available to the
runner object if you invoke it programmatically.

< To increment a counter from anywhere in your job, use the
increment_counter() method:

L)

class MRCountinglob(MRJob):

def steps(self):
3 steps so we can check behavior of counters for multiple steps
return [MRStep(self.mapper),
MRStep(self.mapper),
MRStep(self.mapper)]

def mapper(self, , value):

self.increment_counter('group’, 'counter_name’, 1)
yield , value

< At the end of your job, you'll get the counter’s total value.
< You can also read the counters by using “runner.counters()”

3.34

https://mrjob.readthedocs.io/en/latest/guides/runners.html

How to Find the Shortest Path?

*

< The parallel breadth-first search algorithm only finds the shortest
distances.

&

< Store “back-pointers” at each node, as with Dijkstra's algorithm
Not efficient to recover the path from the back-pointers

< A simpler approach is to emit paths along with distances in the
mapper, so that each node will have its shortest path easily accessible
at all times

The additional space requirement is acceptable

3835

*

L)

L)

BFS Pseudo-Code (Weighted Edges)

The adjacency lists, which were previously lists of node ids, must now
encode the edge distances as well

Positive weights!

In line 6 of the mapper code, instead of emitting d + 1 as the value, we
must now emit d + w, where w is the edge distance

The termination behaviour is very different!

How many iterations are needed in parallel BFS (positive edge
weight case)?

Convince yourself: when \a)@ge is first “"discovered”, we've found

the shortest pat&o_ \

3.36

Additional Complexities

Nsearch frontier

< Assume that p is the current processed node
In the current iteration, we just “discovered” node r for the very first

time.
We've already discovered the shortest distance to node p, and
that the shortest distance to r so far goes through p
|s s->p->r the shortest path from s to r?
< The shortest path from source s to node r may go outside the current
search frontier
It is possible that p->g->r is shorter than p->r!
We will not find the shortest distance to r until the search frontier

expands to cover g.
3.37

How Many Iterations Are Needed?

o

» In the worst case, we might need as many iterations as there are
nodes in the graph minus one

A sample graph that elicits worst-case behaviour for parallel
breadth-first search.

Eight iterations are required to discover shortest distances to all

nodes from n;.

1
Ng L n, 1

Ng
10
QG

n,

1\ 1
OGO
N3

Example (only distances)

< Input file:

s -->0]|nl:10,n2:5
nl-->|n2:2,n3:1
n2 -->« | n1: 3, n3:9, n4:2
n3 --> « | n4:4 1
n4 --> « | s:7, n3:6

3.39

Iteration 1

< Map:
Reads -->0|nl:10,n2:5
Emit: (n1, 10), (n2, 5), and the adjacency list (s, nl1: 10, n2: 5)

The other lists will also be read and emit, but they do not contribute, and
thus ignored

< Reduce:
Receives: (nl, 10), (n2, 5), (s, <0, (n1: 10, n2: 5)>)

The adjacency list of each node will also be received, ignored in example
Emit:

s --=>0]|nl:10,n2:5
nl-->10|n2: 2, n3:1

n2 -->5|nl: 3,n3:9, n4:2

3.40

Iteration 2

< Map:

Read: nl1 -->10|n2: 2, n3:1

Emit: (n2, 12), (n3, 11), (n1, <10, (n2: 2, n3:1)>)

Read: n2 --> 5| nl: 3, n3:9, n4:2

Emit: (n1, 8), (n3, 14), (n4, 7), (n2, <5, (nl1: 3, n3:9, n4:2)>)
Ignore the processing of the other lists

< Reduce:

Receives: (nl, (8, <10, (n2: 2, n3:1)>)), (n2, (12, <5, nl: 3, n3:9, n4:2>)),
(n3, (11, 14)), (n4, 7)

Emit:

nl-->8|n2:2,n3:1

n2 -->5|nl: 3,n3:9, n4:2
n3-->11|n4:4

n4 -->7]|s:7,n3:6

3.41

Iteration 3

< Map:

Read: n1 -->8|n2: 2, n3:1

Emit: (n2, 10), (n3, 9), (n1, <8, (n2: 2, n3:1)>)

Read: n2 --> 5| nl: 3, n3:9, n4:2 (Again!)

Emit: (n1, 8), (n3, 14), (n4, 7), (n2, <5, (nl1: 3, n3:9, n4:2)>)
Read: n3 --> 11 | n4:4

Emit: (n4, 15), (n3, <11, (n4:4)>)

Read: n4 --> 7| s:7, n3:6

Emit: (s, 14), (n3, 13), (n4, <7, (s:7, n3:6)>)
< Reduce:

Emit:

nl-->8|n2:2,n3:1

n2 -->5|nl: 3,n3:9, n4:2

n3-->9|n4:4

n4 -->7|s:7,n3:6

3.42

Iteration 4

In order to avoid duplicated
< Map: computations, you can use

: a status value to indicate
Read: nl-->8|n2:2,n3:1 (Again’) whether the distance of the

Emit: (n2, 10), (n3, 9), (n1, <8, (n2: 2, n3:1)>) node has been modified in
Read: n2 -->5|nl: 3, n3:9, n4:2 (Again!) the previous iteration.

Emit: (n1, 8), (n3, 14), (n4, 7), (n2, <5, (nl1: 3, n3:9, n4:2)>)
Read: n3 -->9 | n4:4

Emit: (n4, 13), (n3, <9, (n4:4)>)

Read: n4 --> 7 | s:7, n3:6 (Again!)

Emit: (s, 14), (n3, 13), (n4, <7, (s:7, n3:6)>)
< Reduce:

Emit:

nl-->8|n2:2,n3:1

n2 -->5|nl: 3,n3:9, n4:2
n3-->9|n4:4

n4 -->7|s:7,n3:6

No updates. Terminate.

3.43

Comparison to Dijkstra

< Dijkstra’s algorithm is more efficient

At any step it only pursues edges from the minimum-cost path
inside the frontier

< MapReduce explores all paths in parallel
Lots of “waste”
Useful work is only done at the “frontier”
< Why can’t we do better using MapReduce?

3.44

PageRank

Web as a Directed Graph

< Web as a directed graph:

Nodes: Webpages

Edges: Hyperlinks

URL 1

L URL 6

ﬁ

URL 7

URL 2

3.46

URL 3

URL 4 ’\J

URL 5

Broad Question

< How to organize the Web? © -2 5 YAHOO! & 9

First try: Human curated

How Ogenc

‘W&”M.‘ e Lusee

Yadoo! Dadt Ehoy) W‘Q@» to Fiay |\

Web directories ' (o) opeons
~)hn°mn Thotoggly, Atkrerwy, * ?‘:;'mmn!';ntﬁ Cwnst Dy
Yahoo, LookSmart, etc. e S R SR
Dirvtiry, Bt s, Chiiiel, Tams, Fpots [Xarat], Gemar, Trand, A,
< Second try: Web Search s bt ek L GRS
2 lz:t:.::.‘t‘nmm. . gy‘n::.:wn. UB e,
Information Retrieval investigates: el O s Amemg et
Find relevant docs in a small " RS o e, Ry b, s
2 5'3‘3, Dvgy, Driwscs, Tiaase, . :::g:.?:’ tn‘-:m.

and trusted set

Newspaper articles, Patents, etc.

But: Web is huge, full of untrusted documents, random things, web
Spam, etc.

< What is the “best” answer to query “newspaper”?
No single right answer

3.47

Ranking Nodes on the Graph

< All web pages are not equally “important”

http://xxx.github.io/ vs. http://www.unsw.edu.au/

< There is large diversity in the web-graph node connectivity. Let’s rank

the pages by the link structure!

3.48

Link Analysis Algorithms

< We will cover the following Link Analysis approaches for computing
Importance of nodes in a graph:

Page Rank
Topic-Specific (Personalized) Page Rank
HITS

3.49

Links as Votes

< |dea: Links as votes
Page is more important if it has more links
In-coming links? Out-going links?

< Think of in-links as votes:
http://www.unsw.edu.au/ has 23,400 in-links
http://xxx.github.io/ has 1 in-link

< Are all in-links equal?

Links from important pages count more
Recursive guestion!

3.50

Example: PageRank Scores

B e

3.3 38.4 C
| \
F
3.9 20

7'\

1.6 1.6 1.6 1.6

1.6

Sl

Simple Recursive Formulation

< Each link’s vote is proportional to the importance of its source page
< If page j with importance r; has n out-links, each link gets r;/ n votes

< Page J’'s own importance is the sum of the votes on its in-links

\/\‘g<
r=r/3+r/4

3.52

PageRank: The “Flow” Model

< A “vote” from an important page is y/?2
worth more

< A page is important if it is pointed to by
other important pages a/2

< Define a “rank” r; for page]

a/2
Z “Flow” equations:

|—>j ry =r,/2+r,/2
r, =r,/2+r,
d; ... out-deqgree of node i _
i g rm = I’a/2

A58

*

*

*

0’0

Solving the Flow Equations

Flow equations:
3 equations, 3 unknowns, no constants Iy =121 12

No unique solution Iy =2+,
All solutions equivalent modulo the scale factor r,=1r,/2

Additional constraint forces uniqueness:

ry +rqo+r, =1

Solution: r, =

Gaussian elimination method works for small examples, but we need
a better method for large web-size graphs

We need a new formulation!

3.54

PageRank: Matrix Formulation

< Stochastic adjacency matrix M
Let page i has d, out-links

1
Ifi — j, then Mji _E else Mji — O

i

M i1s a column stochastic matrix
Columns sumto 1

< Rank vector r: vector with an entry per page
r; IS the importance score of page i

Ziri — 1

< The flow equations can be written

r = M- r

3A55

Example

< Remember the flow equation: I’ _Z—

I—)j

< Flow equation in the matrix form
M-r=r

Suppose page i links to 3 pages, including |

J []
/ [] . =
/// I
1/3 *'[H

3.56

Eigenvector Formulation

< The flow equations can be written
r=M-r

< So the rank vector r is an eigenvector of the stochastic web matrix

M

NOTE: x is an

In fact, its first or principal eigenvector,
eigenvector with

' rr nding eigenvalue 1
with corresponding eigenvalue the corresponding
Largest eigenvalue of M is 1 since M is eigenvalue A if:
Ax = Ax

column stochastic (with non-negative entries)

We know r is unit length and each column of M
sums to one, so Mr < 1

< We can now efficiently solve for r!
The method is called Power iteration

3.57

Example: Flow Equations & M

o
NN
o

<

NN

NN
Ol |O|3

r=M-r
r, =r,/2+r,/2
r, =r,/2+rg, y| |2 % 0
al=% 0 1

=112
m |0 % 0

QD

3.58

Power Iteration Method

R/

< Given a web graph with n nodes, where the nodes are pages and
edges are hyperlinks

/

< Power iteration: a simple iterative scheme
Suppose there are N web pages)
Initialize: r©® =[1/N,....,1/N]" D ZI’,_
lterate: rt*) = M - r® J e—d .
11— |

Stop when [r*1) — r0]; < g d. out-degree of node i

IX]; = 21<ienlXi| 1S the L1 norm
Can use any other vector norm, e.g., Euclidean

3.59

R/

/

rry\

r

a

qi

m+

PageRank: How to solve?

< Power lteration:

Setr; = 1/N

r.

1:r', =Y. =+

J =) d;
2:r =1

Goto 1

< Example:

1/3
1/3
1/3

lteration O, 1, 2, ...

3.60

y a m

Yo | % | 0
al 2| 0 | 1
m| O | | O

ry =r,/2+r,/2

g =T, /2 +T1,

r,=1r,/2

6/15
6/15
3/15

Random Walk Interpretation

< Imagine a random web surfer:
At any time ¢, surfer is on some page i

At time t + 1, the surfer follows an
out-link from i uniformly at random

Ends up on some page j linked from i

Process repeats indefinitely r = Z I
< Let: j T . ‘ d (i)
p(t) ... vector whose i" coordinate is the I—] Zout

prob. that the surfer is at page i at time ¢
So, p(t) is a probability distribution over pages

3.61

The Stationary Distribution

< Where is the surfer at time t+1?
Follows a link uniformly at random
p(t+1)= M- p(t)
< Suppose the random walk reaches a state p(t+ 1) = M - p(t) =
p(t)

then p(t) is stationary distribution of a random walk
< Our original rank vector r satisfies r = M - r

So, r is a stationary distribution for
the random walk

p(t+1)=M-p(t)

3.62

Existence and Unigqueness

< A central result from the theory of random walks (a.k.a. Markov
processes):

For graphs that satisfy certain conditions,
the stationary distribution is unique and

eventually will be reached no matter what the
initial probability distribution attimet=0

3.63

PageRank: Two Questions

r Z— i T = Mr

1— | i

< Does this converge?

< Does it converge to what we want?

3.64

Does this converge?

0—0

(t+1) l’(t)
T .
rj - Z d

1— | i

< Example:

I 0 1 0

Iteration O, 1, 2, ...

3.65

Does it converge to what we want?

0—0

(t+1) r'(t)
— L
rj - Z d

1— | i

< Example:

I 0

Iteration O, 1, 2, ...

3.66

PageRank: Problems

2 problems:

< (1) Some pages are dead ends (have no out-links)
Random walk has “nowhere” to go to

Such pages cause importance to “leak out Dead end

< (2) Spider traps: (all out-links are within the group)
Random walked gets “stuck” in a trap

And eventually spider traps absorb all importance
Spider tl'ap

3.67

Problem: Spider Traps

< Power lteration: y a m

Setr; =1 y| 7 72 0

- a| % 0 0

T = Lisjg, é) m|l 0| % | 1

And iterate
m is a spider trap r, =r, 241,12
r, =r,/2
» Example: r,=r,/l2+r,

Ty 1/3 2/6 3/12 5/24 0
.| = U3 16 212 324 .. O
[13 36 7/12 16/24 1

lteration O, 1, 2, ...

All the PageRank score gets “trapped” in node m.

3.68

Solution: Teleport!

< The Google solution for spider traps: At each time step, the random
surfer has two options

With prob. g, follow a link at random
With prob. 1-4, jump to some random page
Common values for B are in the range 0.8 to 0.9

*

< Surfer will teleport out of spider trap within a few time steps

3.69

Problem: Dead Ends

< Power lteration:

Setr; =1

= Zinjg,

And iterate
» Example:
T, /3 2/6 3/12
|l= 13 16 2/12
i 13 16 1/12

lteration O, 1, 2, ...

5/24
3/24
2124

y a m
Ya Ya 0

a| % 0 0
m| O Y2 0

r, =r,/2+r,/2

r, =r,/2
r,=1r,/2

0

0
0

Here the PageRank “leaks” out since the matrix is not stochastic.

3.70

Solution: Always Teleport!

< Teleports: Follow random teleport links with probability 1.0 from dead-
ends

Adjust matrix accordingly

y a m y a m

y| % s 0 y| % Yo A
a| % 0 0 a| % 0 V4

m| O Yo 0 m| O Ya Ya

Why Teleports Solve the Problem?

Why are dead-ends and spider traps a problem and why do
teleports solve the problem?

/

< Spider-traps are not a problem, but with traps PageRank scores are
not what we want

Solution: Never get stuck in a spider trap by teleporting out of it in
a finite number of steps

< Dead-ends are a problem

The matrix is not column stochastic so our initial assumptions are
not met

Solution: Make matrix column stochastic by always teleporting
when there is nowhere else to go

3.72

Google’s Solution: Random Teleports

<+ Google’s solution that does it all:
At each step, random surfer has two options:

With probability g, follow a link at random
With probability 1-4, jump to some random page

< PageRank equation [Brin-Page, 98]

1= B+ -py

out-degree
l—>] of node i

This formulation assumes that M has no dead ends. We can either
preprocess matrix M to remove all dead ends or explicitly follow random
teleport links with probability 1.0 from dead-ends.

SN

*

.0

<,

>

The Google Matrix

PageRank equation [Brin-Page, ‘98]
Nl
=) Bzt -y
=g

The Google Matrix A:
[1/N]yxn---N by N matrix

1
A=BM+(1-p) [—] where all entries are 1/N
Nlyxn

We have a recursive problem: r=A4-r
And the Power method still works!

What is g7
In practice £=0.8,0.9 (make 5 steps on avg., jump)

3.74

Random Teleports (= 0.8)

M [1/N] NXN
1/21/2 0 1/3 1/3 1/3
1/2 0 0] +0.211/31/31/3
0 12 1 1/3 1/3 1/3

y 1/3 033 0.24 0.26
a = 1/3 0.20 0.20 0.18
m 1/3 046 0.52 0.56

S5

y
a

m

7115 7/15 1/15
7115 1/15 1/15
1/15 7/15 13/15

A

7133
5/33
21/33

Computing Page Rank

R/

< Key step is matrix-vector multiplication
fnew = A . rold

/

< Easy if we have enough main memory to hold A, reld, rnew

< Say N =1 billion pages A = B'M + (1_B) [1/N]NxN
We need 4 bytes for
each entry (say) Y2 % 0 1/3 1/3 1/3
- : — X 0 0 1/3 1/31/3
2 billion entries for A =o0.8 02 WA RS Ry iy
vectors, approx 8GB

Matrix A has N2 entries

108 is a large number! 7/15 7/15 1/15
7/15 1/15 1/15
1/15 7/15 13/15

3.76

Matrix Formulation

Suppose there are N pages

Consider page I, with d; out-links

We have M; = 1/|d;| when i - |
and M; = 0 otherwise

The random teleport is equivalent to:

Adding a teleport link from i to every other page and setting
transition probability to (1-8)/N

Reducing the probability of following each
out-link from 1/|d;| to g/|d|

Equivalent: Tax each page a fraction (1-p) of its score and
redistribute evenly

3.77

Rearranging the Equation

“ r =A-r, whered;; =M S

’0

v 1 =X AT

* 7= Iiv=1[:8Mji+ﬂ]'ri

{V=1,3Mji'7”z 321 17

=Y, B My 1+ =F since);r; =

o Soweget:r=ﬂM~r+[%

Note: Here we assumed M
has no dead-ends [X]y --- @ vector of length N with all entries x

3.78

Sparse Matrix Formulation

< We just rearranged the PageRank equation

r:BM-r+[¥

N
where [(1-B)/N]y is a vector with all N entries (1-8)/N

% Mis a sparse matrix! (With no dead-ends)
10 links per node, approx 10N entries
< S0 in each iteration, we need to:
Compute r"ew = g M - rold
Add a constant value (1-8)/N to each entry in rnew

Note if M contains dead-ends then };; r}“’“’ < 1 and
we also have to renormalize r"ew so that it sums to 1

3.79

PageRank: The Complete Algorithm

< Input: Graph G and parameter f8
Directed graph G (can have spider traps and dead ends)
Parameter 8

< Output: PageRank vector r"¢%

..old _ 1
Set.r] =

- . new __ old
repeat until Convergence. Zle']] > &

old

Vi =3, B

r'iW =0 if m-degree ofjis O

» Now re-insert the leaked PageRank:

Vj: e = ’"ew+— where: § =¥, r'*"

, pold — ;new

If the graph has no dead-ends then the amount of leaked PageRank is 1-B. But since we have dead-ends
the amount of leaked PageRank may be larger. We have to explicitly account for it by computing S.

3.80

Sparse Matrix Encoding

< Encode sparse matrix using only nonzero entries
Space proportional roughly to number of links
Say 10N, or 4*10*1 billion = 40GB
Still won'’t fit in memory, but will fit on disk

source
node degree destination nodes

O 3 11 51 7

1 5 17, 64, 113, 117, 245

2 2 13, 23

3.81

Basic Algorithm: Update Step

< Assume enough RAM to fit r"®W into memory
Store rold and matrix M on disk
< 1 step of power-iteration is:

Initialize all entries of r"ew = (1-B) / N
For each page i (of out-degree d,):
Read into memory: i, d;, dest,, ..., desty, ro'd(i)
Forj=1...d
rmew(dest;) += B rold(i) / d,

0 rew source degree destination rod 0
o [s Juse | ;
2 2
3 1 4 17,64, 113, 117 3
4 2 2 |13,23 :
3} S}

6

3.82

Analysis

< Assume enough RAM to fit r"eW into memory
Store rold and matrix M on disk

< In each iteration, we have to:
Read ro'd and M
Write r"&W back to disk

Cost per iteration of Power method:
= 2|r| + |M]

% Question:

What if we could not even fit r"®" in memory?
Split r"eWinto blocks. Details ignored

3.83

Some Problems with Page Rank

< Measures generic popularity of a page

Biased against topic-specific authorities

Solution: Topic-Specific (Personalized) PageRank (next)
< Uses a single measure of importance

Other models of importance

Solution: Hubs-and-Authorities

3.84

PageRank in MapReduce

PageRank Computation Review

< Properties of PageRank
Can be computed iteratively
Effects at each iteration are local
< Sketch of algorithm:
Start with seed r; values
Each page distributes r; “credit” to all pages it links to

Each target page t; adds up “credit” from multiple in-bound links to
compute r;

Iterate until values converge

3.86

Simplified PageRank

< First, tackle the simple case:
No teleport
No dead ends
< Then, factor in these complexities...
How to deal with the teleport probability?
How to deal with dead ends?

3.87

Sample PageRank Iteration (1)

n, (0.166)

n4 (0.066)

N

n 5%

n;(0.166)

n, (0.3)

3.88

Sample PageRank Iteration (2)

n,(0.133
n, (0.166) 2)

n,(0.1)

>
mﬁf\

n(0.183
n; (0.166) 2)

Ny (0.2)

n,(0.3)

3.89

*

.0

0

PageRank in MapReduce

One iteration of the PageRank algorithm involves taking an estimated
PageRank vector r and computing the next estimate r' by

_ 1-8
T—ﬁM'T‘F[T]N

Mapper: input — a line containing node u, r,, a list of out-going
neighbors of u

For each neighbor v, emit(v, r ,/deg(u))
Emit (u, a list of out-going neighbors of u)

Reducer: input — (node v, a list of values <r /deg(u), ...>)

Aggregate the results according to the equation to compute r’,
Emit node v, r',, a list of out-going neighbors of v

3.90

PageRank in MapReduce (One Iteration)

Ny [Ny, Ny N, [N3, Ng] Ns [Ny] N, [Ng]
Map / / N\ l |
n, N, N, N Ny Ns
Ny N, n, N3 N3 Ny n,
Reduce | \, / \, / \ \l
Ny [Ny, Nyl Ny [Ng, NG Ng [N,] N, [Ng]

3.91

Ns [Ny, Ny, Ng]

“ole

n5\ 25

Ns [Ny, Ny, Ny

PageRank Pseudo-Code

1: class MAPPER

2 method MAPp(nid n, node V)

3 p— N.PACERANK/|N.ADJACENCYLIST|

4: Emrr(nid n, N) > Pass along graph structure
5

6

for all nodeid m € N.ApjacEncyLisT do
EmiT(nid m, p) - Pass PageRank mass to neighbors

1: class REDUCER

2 method REbUCE(nid m, [py, p2....])

3 M—0

4: for all p € counts [py, ps,...] do

5 it IsNoDE(p) then

6 M —p = Recover graph structure
7 else

8 S 84p - Sums incoming PageRank contributions
9: M.PAGERANK — s

10: EwmiT(nid m,node M)

3.92

Complete PageRank

< Two additional complexities
What is the proper treatment of dangling nodes?
How do we factor in the random jump factor?

< Solution:

If a node’s adjacency list is empty, distribute its value to all nodes
evenly.

In mapper, for such a node i, emit (nid m, r/N) for each node m
in the graph

Add the teleport value
In reducer, M.PageRank = g*s+ (1- f)/ N

3.93

Graphs and MapReduce

< Graph algorithms typically involve:

Performing computations at each node: based on node features,
edge features, and local link structure

Propagating computations: “traversing” the graph
< Generic recipe:
Represent graphs as adjacency lists
Perform local computations in mapper
Pass along partial results via outlinks, keyed by destination node
Perform aggregation in reducer on inlinks to a node
lterate until convergence: controlled by external “driver”
Don’t forget to pass the graph structure between iterations

3.94

Issues with MapReduce on Graph Processing

< MapReduce Does not support iterative graph computations:
External driver. Huge 1/O incurs

No mechanism to support global data structures that can be
accessed and updated by all mappers and reducers

Passing information is only possible within the local graph
structure — through adjacency list

Dijkstra's algorithm on a single machine: a global priority
gueue that guides the expansion of nodes

Dijkstra‘s algorithm in Hadoop, no such queue available. Do
some “wasted” computation instead

<+ MapReduce algorithms are often impractical on large, dense graphs.

The amount of intermediate data generated is on the order of the
number of edges.

For dense graphs, MapReduce running time would be dominated
by copying intermediate data across the network.

3.95

Iterative MapReduce

< Only a subset of data needs computation:
Iterations

Data Data \Data Data
Data > Data > \Data > Data
Data Data Data Data
Data > Data > \Data > \Data

Data Data Data Data
Data Data Data Data
Data Data Data Data

Barrier
Barrier
Barrier

3.96

Iterative MapReduce

< System is not optimized for iteration:

Date *
Dat:
Datz Q
Q
~
c
Dat: %
D
-
Q
Dat: <
Datz
Data—»

2 CPUL

P cru2

?CPUM

Ajeuad 3siq

v Data -

1 Data |
\ Data |
A Data |
\ Data |
N Data |

¥ Dpata)

Iterations

Ajeusd dnyels

P cPUL g

) cru2 ¢

-
(@)
v
(-
w

AN

3.97

Ajeuad ¥siq

Data -

Data |

Data |

Data |

Data)

Data |

Data

Ajjeusd dnueis

P cPUL g

) cru2 ¢

-
(@)
)
(o
w

AN

Ajeuad ¥siq

Data

Data

Data

Data

Data

Data

Data

Better Partitioning

< Default: hash partitioning

Randomly assign nodes to partitions
< Observation: many graphs exhibit local structure

E.g., communities in social networks

Better partitioning creates more opportunities for local aggregation
< Unfortunately, partitioning is hard!

Sometimes, chick-and-egg...

But cheap heuristics sometimes available

For webgraphs: range partition on domain-sorted URLs

3.98

References

< Chapter 5, Data-Intensive Text Processing with MapReduce. Jimmy
Lin and Chris Dyer. University of Maryland, College Park.

3.99

End of Chapter 8.1

	Slide 1: COMP9313: Big Data Management Lecturer: Xin Cao Course web site: http://www.cse.unsw.edu.au/~cs9313/
	Slide 2
	Slide 3
	Slide 4: What’s a Graph?
	Slide 5: Graph Analytics
	Slide 6: Graphs and MapReduce
	Slide 7: Representing Graphs
	Slide 8: Adjacency Matrices: Critique
	Slide 9: Representing Graphs
	Slide 10: Adjacency Lists: Critique
	Slide 11
	Slide 12: Single-Source Shortest Path (SSSP)
	Slide 13: Dijkstra’s Algorithm
	Slide 14: Dijkstra’s Algorithm Example
	Slide 15: Dijkstra’s Algorithm Example
	Slide 16: Dijkstra’s Algorithm Example
	Slide 17: Dijkstra’s Algorithm Example
	Slide 18: Dijkstra’s Algorithm Example
	Slide 19: Dijkstra’s Algorithm Example
	Slide 20: Single Source Shortest Path
	Slide 21: Finding the Shortest Path
	Slide 22: Visualizing Parallel BFS
	Slide 23: From Intuition to Algorithm
	Slide 24: Multiple Iterations Needed
	Slide 25: BFS Pseudo-Code
	Slide 26: Stopping Criterion
	Slide 27: Implementation in MapReduce
	Slide 28: Chained MapReduce Job (Java)
	Slide 29: MapReduce Counters
	Slide 30: Built-in Counters
	Slide 31: User-Defined Counters
	Slide 32: Implement User-Defined Counters
	Slide 33: Implement User-Defined Counters
	Slide 34: Counters in MRJob
	Slide 35: How to Find the Shortest Path?
	Slide 36: BFS Pseudo-Code (Weighted Edges)
	Slide 37: Additional Complexities
	Slide 38: How Many Iterations Are Needed?
	Slide 39: Example (only distances)
	Slide 40: Iteration 1
	Slide 41: Iteration 2
	Slide 42: Iteration 3
	Slide 43: Iteration 4
	Slide 44: Comparison to Dijkstra
	Slide 45
	Slide 46: Web as a Directed Graph
	Slide 47: Broad Question
	Slide 48: Ranking Nodes on the Graph
	Slide 49: Link Analysis Algorithms
	Slide 50: Links as Votes
	Slide 51: Example: PageRank Scores
	Slide 52: Simple Recursive Formulation
	Slide 53: PageRank: The “Flow” Model
	Slide 54: Solving the Flow Equations
	Slide 55: PageRank: Matrix Formulation
	Slide 56: Example
	Slide 57: Eigenvector Formulation
	Slide 58: Example: Flow Equations & M
	Slide 59: Power Iteration Method
	Slide 60: PageRank: How to solve?
	Slide 61: Random Walk Interpretation
	Slide 62: The Stationary Distribution
	Slide 63: Existence and Uniqueness
	Slide 64: PageRank: Two Questions
	Slide 65: Does this converge?
	Slide 66: Does it converge to what we want?
	Slide 67: PageRank: Problems
	Slide 68: Problem: Spider Traps
	Slide 69: Solution: Teleport!
	Slide 70: Problem: Dead Ends
	Slide 71: Solution: Always Teleport!
	Slide 72: Why Teleports Solve the Problem?
	Slide 73: Google’s Solution: Random Teleports
	Slide 74: The Google Matrix
	Slide 75: Random Teleports ( = 0.8)
	Slide 76: Computing Page Rank
	Slide 77: Matrix Formulation
	Slide 78: Rearranging the Equation
	Slide 79: Sparse Matrix Formulation
	Slide 80: PageRank: The Complete Algorithm
	Slide 81: Sparse Matrix Encoding
	Slide 82: Basic Algorithm: Update Step
	Slide 83: Analysis
	Slide 84: Some Problems with Page Rank
	Slide 85
	Slide 86: PageRank Computation Review
	Slide 87: Simplified PageRank
	Slide 88: Sample PageRank Iteration (1)
	Slide 89: Sample PageRank Iteration (2)
	Slide 90: PageRank in MapReduce
	Slide 91: PageRank in MapReduce (One Iteration)
	Slide 92: PageRank Pseudo-Code
	Slide 93: Complete PageRank
	Slide 94: Graphs and MapReduce
	Slide 95: Issues with MapReduce on Graph Processing
	Slide 96: Iterative MapReduce
	Slide 97: Iterative MapReduce
	Slide 98: Better Partitioning
	Slide 99: References
	Slide 100: End of Chapter 8.1

