
COMP9313: Big Data Management

Lecturer: Xin Cao
Course web site: http://www.cse.unsw.edu.au/~cs9313/

7.2

Chapter 7.2: Finding Similar Items

Step 3: Locality-Sensitive Hashing:

Focus on pairs of signatures likely to be

from similar documents

Docu-

ment

The set

of strings

of length k

that appear

in the doc-

ument

Signatures:

short integer

vectors that

represent the

sets, and

reflect their

similarity

Locality-

Sensitive

Hashing

Candidate

pairs:

those pairs

of signatures

that we need

to test for

similarity

7.4

LSH: First Cut

❖ Goal: Find documents with Jaccard similarity at least s (for some similarity

threshold, e.g., s=0.8)

❖ LSH – General idea: Use a function f(x,y) that tells whether x and y is a

candidate pair: a pair of elements whose similarity must be evaluated

❖ For Min-Hash matrices:

➢ Hash columns of signature matrix M to many buckets

➢ Each pair of documents that hashes into the same bucket is a candidate

pair

1212

1412

2121

7.5

Candidates from Min-Hash

❖ Pick a similarity threshold s (0 < s < 1)

❖ Columns x and y of M are a candidate pair if their signatures agree

on at least fraction s of their rows:

M (i, x) = M (i, y) for at least frac. s values of i

➢ We expect documents x and y to have the same (Jaccard)

similarity as their signatures

1212

1412

2121

7.6

LSH for Min-Hash

❖ Big idea: Hash columns of

signature matrix M several times

❖ Arrange that (only) similar columns are likely to hash to the same

bucket, with high probability

❖ Candidate pairs are those that hash to the same bucket

1212

1412

2121

7.7

Partition M into b Bands

Signature matrix M

r rows

per band

b bands

One

signature

7.8

Partition M into Bands

❖ Divide matrix M into b bands of r rows

❖ For each band, hash its portion of each column to a hash table with k

buckets

➢ Make k as large as possible

❖ Candidate column pairs are those that hash to the same bucket for ≥ 1

band

❖ Tune b and r to catch most similar pairs, but few non-similar pairs

7.9

Matrix M

r rows b bands

Buckets

Columns 2 and 6

are probably identical

(candidate pair)

Columns 6 and 7 are

surely different.

Hashing Bands

7.10

Hashing Bands

❖ Regardless of what those columns look like in the other three bands,
this pair of columns will be a candidate pair

❖ Two columns that do not agree in band 1 have three other chances to
become a candidate pair; they might be identical in any one of these
other bands.

7.11

Simplifying Assumption

❖ There are enough buckets that columns are unlikely to hash to the

same bucket unless they are identical in a particular band

❖ Hereafter, we assume that “same bucket” means “identical in that

band”

❖ Assumption needed only to simplify analysis, not for correctness of

algorithm

7.12

Example of Bands

Assume the following case:

❖ Suppose 100,000 columns of M (100k docs)

❖ Signatures of 100 integers (rows)

❖ Therefore, signatures take 40Mb

❖ Choose b = 20 bands of r = 5 integers/band

❖ Goal: Find pairs of documents that are at least s = 0.8 similar

7.13

C1, C2 are 80% Similar

❖ Find pairs of  s=0.8 similarity, set b=20, r=5

❖ Assume: sim(C1, C2) = 0.8

➢ Since sim(C1, C2)  s, we want C1, C2 to be a candidate pair: We want

them to hash to at least 1 common bucket (at least one band is

identical)

❖ Probability C1, C2 identical in one particular band: (0.8)5 = 0.328

❖ Probability C1, C2 are not similar in all of the 20 bands: (1-0.328)20 =

0.00035

➢ i.e., about 1/3000th of the 80%-similar column pairs are false

negatives (we miss them)

➢ We would find 99.965% pairs of truly similar documents

7.14

C1, C2 are 30% Similar

❖ Find pairs of  s=0.8 similarity, set b=20, r=5

❖ Assume: sim(C1, C2) = 0.3

➢ Since sim(C1, C2) < s we want C1, C2 to hash to NO common buckets

(all bands should be different)

❖ Probability C1, C2 identical in one particular band: (0.3)5 = 0.00243

❖ Probability C1, C2 identical in at least 1 of 20 bands: 1 - (1 - 0.00243)20 =

0.0474

➢ In other words, approximately 4.74% pairs of docs with similarity 0.3%

end up becoming candidate pairs

 They are false positives since we will have to examine them (they

are candidate pairs) but then it will turn out their similarity is below

threshold s

7.15

LSH Involves a Tradeoff

❖ Pick:

➢ The number of Min-Hashes (rows of M)

➢ The number of bands b, and

➢ The number of rows r per band to balance false positives/negatives

❖ Example: If we had only 15 bands of 5 rows, the number of false

positives would go down, but the number of false negatives would go

up

7.16

Analysis of LSH – What We Want

Similarity t =sim(C1, C2) of two sets

Probability
of sharing
a bucket

S
im

ila
ri
ty

 t
h
re

sh
o
ld

 s

No chance
if t < s

Probability = 1 if
t > s

7.17

What 1 Band of 1 Row Gives You

Remember:
Probability of
equal hash-values
= similarity

Similarity t =sim(C1, C2) of two sets

Probability
of sharing
a bucket

7.18

b bands, r rows/band

❖ The probability that the minhash signatures for the documents agree

in any one particular row of the signature matrix is t (sim(C1, C2))

❖ Pick any band (r rows)

➢ Prob. that all rows in band equal = tr

➢ Prob. that some row in band unequal = 1 - tr

❖ Prob. that no band identical = (1 - tr)b

❖ Prob. that at least 1 band identical = 1 - (1 - tr)b

7.19

What b Bands of r Rows Gives You

tr

All rows
of a band
are equal

1 -

Some row
of a band
unequal

()b

No bands
identical

1 -

At least
one band
identical

s ~ (1/b)1/r

Similarity t=sim(C1, C2) of two sets

Probability
of sharing
a bucket

7.20

Example: b = 20, r = 5

❖ Similarity threshold s

❖ Prob. that at least 1 band is identical:

s 1-(1-sr)b

.2 .006

.3 .047

.4 .186

.5 .470

.6 .802

.7 .975

.8 .9996

7.21

Picking r and b: The S-curve

❖ Picking r and b to get the best S-curve

➢ 50 hash-functions (r=5, b=10)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Blue area: False Negative rate

Black area: False Positive rate

Similarity

P
ro

b
.

s
h
a
ri
n
g
 a

 b
u
c
k
e
t

7.22

LSH Summary

❖ Tune M, b, r to get almost all pairs with similar signatures, but eliminate
most pairs that do not have similar signatures

❖ Check in main memory that candidate pairs really do have similar
signatures

❖ Optional: In another pass through data, check that the remaining
candidate pairs really represent similar documents

7.23

Summary: 3 Steps

❖ Shingling: Convert documents to sets

➢ We used hashing to assign each shingle an ID

❖ Min-Hashing: Convert large sets to short signatures, while preserving

similarity

➢ We used similarity preserving hashing to generate signatures with

property Pr[h(C1) = h(C2)] = sim(C1, C2)

➢ We used hashing to get around generating random permutations

❖ Locality-Sensitive Hashing: Focus on pairs of signatures likely to be from

similar documents

➢ We used hashing to find candidate pairs of similarity  s

7.24

Distance Measures

❖ Generalized LSH is based on some kind of “distance” between points.

➢ Similar points are “close.”

❖ Example: Jaccard similarity is not a distance; 1 minus Jaccard

similarity is.

❖ d is a distance measure if it is a function from pairs of points to real

numbers such that:

1. d(x,y) > 0.

2. d(x,y) = 0 iff x = y.

3. d(x,y) = d(y,x).

4. d(x,y) < d(x,z) + d(z,y) (triangle inequality).

7.25 25

Some Euclidean Distances

❖ L2 norm: d(x,y) = square root of the sum of the squares of the

differences between x and y in each dimension.

➢ The most common notion of “distance.”

❖ L1 norm: sum of the differences in each dimension.

➢ Manhattan distance = distance if you had to travel along

coordinates only.

a = (5,5)

b = (9,8)
L2-norm:

dist(a,b) =

(42+32)= 5

L1-norm:

dist(a,b) =4+3 = 7

4

35

7.26 26

Some Non-Euclidean Distances

❖ Jaccard distance for sets = 1 minus Jaccard similarity.

❖ Cosine distance for vectors = angle between the vectors.

❖ Edit distance for strings = number of inserts and deletes to change one string

into another.

7.27 27

Cosine Distance

❖ Think of a point as a vector from the origin [0,0,…,0] to its location.

❖ Two points’ vectors make an angle, whose cosine is the normalized

dot-product of the vectors: p1.p2/|p2||p1|.

➢ Example: p1 = [1,0,2,-2,0]; p2 = [0,0,3,0,0].

➢ p1.p2 = 6; |p1| = |p2| = 9 = 3.

➢ cos() = 6/9;  is about 48 degrees.

7.28

Edit Distance

❖ The edit distance of two strings is the number of inserts and deletes of

characters needed to turn one into the other.

❖ An equivalent definition: d(x,y) = |x| + |y| - 2|LCS(x,y)|.

➢ LCS = longest common subsequence = any longest string

obtained both by deleting from x and deleting from y.

❖ Example:

➢ x = abcde ; y = bcduve.

➢ Turn x into y by deleting a, then inserting u and v after d.

 Edit distance = 3.

➢ Or, computing edit distance through the LCS, note that LCS(x,y) =

bcde.

➢ Then:|x| + |y| - 2|LCS(x,y)| = 5 + 6 –2*4 = 3 = edit distance.

7.29

Hash Functions Decide Equality

❖ There is a subtlety about what a “hash function” is, in the context of

LSH families.

❖ A hash function h really takes two elements x and y, and returns a

decision whether x and y are candidates for comparison.

❖ Example: the family of minhash functions computes minhash values

and says “yes” iff they are the same.

❖ Shorthand: “h(x) = h(y)” means h says “yes” for pair of elements x and

y.

29

7.30

LSH Families Defined

❖ Suppose we have a space S of points with a distance measure d.

❖ A family H of hash functions is said to be (d1,d2,p1,p2)-sensitive if for

any x and y in S:

1. If d(x,y) < d1, then the probability over all h in H, that h(x) = h(y)

is at least p1.

2. If d(x,y) > d2, then the probability over all h in H, that h(x) = h(y)

is at most p2.

7.31 31

LS Families: Illustration

d1 d2

High

probability;

at least p1

Low

probability;

at most p2

???

p1

p2

7.32

Example: LS Family – (2)

❖ Claim: H is a (1/3, 3/4, 2/3, 1/4)-sensitive family for S and d.

If distance < 1/3

(so similarity > 2/3)

Then probability

that minhash values

agree is > 2/3

For Jaccard similarity, minhashing gives us a

(d1,d2,(1-d1),(1-d2))-sensitive family for any d1 < d2.

If distance > 3/4

(so similarity < 1/4)

Then probability

that minhash values

agree is < 1/4

7.33

LSH for Euclidean Distance

❖ Idea: Hash functions correspond to lines

❖ Partition the line into buckets of size a

❖ Hash each point to the bucket containing its projection onto the

line

➢ An element of the “Signature” is a bucket id for that given

projection line

❖ Nearby points are always close; distant points are rarely in same

bucket

7.34

Projection of Points

❖ “Lucky” case:

➢ Points that are close

hash in the same bucket

➢ Distant points end up in

different buckets

❖ Two “unlucky” cases:

➢ Top: unlucky

quantization

➢ Bottom: unlucky

projection

v
v

Line

Buckets of size a

v v

v
v

v v

v
v

v
v

7.35

Multiple Projections

v v

v
v

v
v

v
v

7.36

Projection of Points

Bucket

width a

Randomly

chosen line

Points at

distance d
If d << a, then

the chance the

points are in the

same bucket is

at least 1 – d/a.

7.37

Projection of Points

Bucket

width a

Points at

distance d

θ

d cos θ

If d >> a, θ must

be close to 90o

for there to be

any chance points

go to the same

bucket.

Randomly

chosen line

7.38

An LS-Family for Euclidean Distance

❖ If points are distance d < a/2, prob, they are in same bucket ≥ 1- d/a

= ½

❖ If points are distance d > 2a apart, then they can be in the same

bucket only if d cos θ ≤ a

➢ cos θ ≤ ½

➢ 60 < θ < 90, i.e., at most 1/3 probability

❖ Yields a (a/2, 2a, 1/2, 1/3)-sensitive family of hash functions for any a

Part 2: Exact Approach to Finding

Similar Records

7.40

40

Set-Similarity Join

Finding pairs of records with a similarity on their join attributes > t

7.41

Set-Similarity Join

❖ Given two collections of records R and S, a similarity function sim(., .),

and a threshold τ, the set similarity join between R and S, is to find all

record pairs r (from R) and s (from S), such that sim(r, s) >= τ.

❖ Given the above example, and set τ=0.5, the results are： (r1, s1)

(similarity 0.75), (r2, s2) (similarity 0.5), (r3, s1) (similarity 0.5), (r3, s2)

(similarity 0.5).

❖ LSH can solve this problem approximately.

7.42

Application: Record linkage

Star

Keanu Reeves

Samuel Jackson

Schwarzenegger

…

Table R Table S

Star

Keanu Reeves

Samuel L. Jackson

Schwarzenegger

…

7.43

Two-step Solution

Step 2: Verification

Star

…

Table R Table S

Star

…

Step 1:

Similarity Join

7.44

Self-Join

❖ Given a collection of records R, a similarity function sim(., .), and a threshold

τ, the set similarity self-join on R, is to find all record pairs r and s from R,

such that sim(r, s) >= τ.

id record

0

1

2

3

4

5

1 4 5 6

2 3 6

4 5 6

1 4 6

2 5 6

3 5

pair similarity

(0,2)

(0,3)

(1,4)

(2,3)

(2,4)

0.75

0.75

0.5

0.5

0.5

7.45

A Naïve Solution

❖ Map: <23, (a,b,c)> → (a, 23), (b, 23), (c, 23)

❖ Reduce: (a,23),(a,29),(a,50), … → Verify each pair (23, 29), (23, 50),

(29, 50) … …

❖ Too much data to transfer 

❖ Too many pairs to verify 

7.46

Solving frequency skew: prefix filtering

❖ Sort tokens by frequency (ascending)

❖ Prefix of a set: least frequent tokens

❖ Prefixes of similar sets should share tokens

prefix

r1

r2 Sorted by frequency

7.47

Prefix filtering: example

Record 1

Record 2

❖ Each set has 5 tokens

❖ “Similar”: they share at least 4 tokens

❖ Prefix length: 2

7.48

Hadoop Solution: Overview

❖ Stage 1: Order tokens by frequency

❖ Stage 2: Finding “similar” id pairs (verification)

❖ Stage 3: remove duplicates

Efficient Parallel Set-Similarity Joins Using MapReduce. SIGMOD’10

https://flamingo.ics.uci.edu/pub/sigmod10-vernica.pdf

7.49

Stage 1: Sort tokens by frequency

Compute token frequencies Sort them

MapReduce phase 1 MapReduce phase 2

7.50

Stage 2: Find “similar” id pairs

Partition using prefixes Verify similarity

7.51

Stage 3: Remove Duplicates

7.52

Compute the Length of Shared Tokens

❖ Jaccard Similarity: sim(r, s) = |rs|/|rs|

❖ If sim(r, s) >= τ, |rs| >= |rs| * τ >= max(|r|, |s|) * τ >= |r| * τ = l

❖ Given a record r, you can compute the prefix length as p = |r| - l + 1

❖ r and s is a candidate pair, they must share at least one token in the

first (|r| - l + 1) tokens

❖ Given a record r = (A, B, C, D) and p = 2, the mapper emits (A, r) and

(B, r)

7.53

More Optimization Strategies

❖ (Optional) Do it using Spark on Google Dataproc

❖ It is your job to design more optimization strategies. The faster the

better!

❖ Thinking:

➢ How to compute the prefix length of a single record when

processing it?

➢ How to pass the sorted list to each worker?

➢ Is it necessary to compute the similarity for duplicate pairs?

7.54

More Tips on Project 3

❖ 1. It is suggested to use Spark DataFrame APIs. It is also fine to use

Spark RDD APIs.

❖ 2. You CANNOT use LSH to do this project, since that can only obtain

approximate results. This project requires exact set similarity join

results. Please follow the slides as introduced during the lecture.

❖ 3. One more test case will be released to you soon.

❖ 4. Some hints to accelerate your program:

➢ Do not use string for storing the elements.

➢ Please broadcast the frequency lookup table.

➢ Try to avoid computing similarities for the duplicated pairs.

❖ 5. You do not need to merge the results.

❖ 6. To guarantee the fairness of comparing the efficiency, we will run

your code in the VM using two local threads with Spark's default

partition.

7.55

More Tips on Project 3 (Dataproc)

❖ 1. Check your bill!!! Be careful of how much you have already spent.

Remember to terminate the cluster and delete the data in your bucket

after you finish your jobs!!! If you have used the $300 credits, you can

register with Dataproc using a new email.

❖ 2. If the CPU limit of your account is only 8, you just need to create

two clusters: one with 2 worker nodes and the other one with 3 worker

nodes. I do not know why the CPU limit is different for us, and I

haven't found a solution for this.

❖ 3. Someone may see some error messages like: "Broadcasting large

task binary with size XXXMB" or "java.lang.InterruptedException". If

you job can complete successfully, you can ignore these messages. I

also saw such messages when running my job.

❖ 4. Do not use SetMaster("local") when running on Dataproc.

❖ 5. More partitions of your RDD/DataFrame could be helpful on clusters

with more worker nodes.

7.56

References

❖ Chapter 3 of Mining of Massive Datasets.

End of Chapter 7.2

