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Chapter 5.1: Spark III



5.3

Part 1: Spark Structured APIs
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A Brief Review of RDD

❖ The RDD is the most basic abstraction in Spark. There are three vital 

characteristics associated with an RDD:

➢ Dependencies (lineage)

 When necessary to reproduce results, Spark can recreate an 

RDD from the dependencies and replicate operations on it. 

This characteristic gives RDDs resiliency.

➢ Partitions (with some locality information)

 Partitions provide Spark the ability to split the work to 

parallelize computation on partitions across executors

 Reading from HDFS—Spark will use locality information to 

send work to executors close to the data

➢ Compute function: Partition => Iterator[T]

 An RDD has a compute function that produces an Iterator[T] 

for the data that will be stored in the RDD.
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Compute Average Values for Each Key

❖ Assume that we want to aggregate all the ages for each name, group 

by name, and then compute the average age for each name

pairs = sc.parallelize([(1, 2), (3, 1), (3, 6), (4,2)])

pairs1 = pairs.mapValues(lambda x: (x, 1))

pairs2 = pairs1.reduceByKey(lambda x, y: (x[0] + y[0], x[1]+y[1]))

avg = pairs2.mapValues(lambda x: x[0]/x[1]).collect()
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Problems of RDD Computation Model

❖ The compute function (or computation) is opaque to Spark

➢ Whether you are performing a join, filter, select, or aggregation, 

Spark only sees it as a lambda expression

❖ Spark has no way to optimize the expression, because it’s unable to 

inspect the computation or expression in the function.

❖ Spark has no knowledge of the specific data type in RDD

➢ To Spark it’s an opaque object; it has no idea if you are accessing 

a column of a certain type within an object

pairs1 = pairs.mapValues(lambda x: (x, 1))
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Spark’s Structured APIs

❖ Spark 2.x introduced a few key schemes for structuring Spark,

❖ This specificity is further narrowed through the use of a set of common 

operators in a DSL (domain specific language), including the Dataset 

APIs and DataFrame APIs

➢ These operators let you tell Spark what you wish to compute with 

your data

➢ It can construct an efficient query plan for execution.

❖ Structure yields a number of benefits, including better performance 

and space efficiency across Spark components
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Spark’s Structured APIs

❖ E.g, for the average age problem, using the DataFrame APIs:

➢ Scala:

➢ Python:

val data_df = List(("Brooke", 20), ("Denny", 
31), ("Jules", 30),("TD", 35), ("Brooke", 
25)).toDF("name", "age")

data_df.groupBy("name").agg(avg("age")).show()

from pyspark.sql.functions import avg

data_df = spark.createDataFrame([("Brooke", 
20), ("Denny", 31), ("Jules", 30),("TD", 35), 
("Brooke", 25)], schema = 'name string, age 
int')

data_df.groupBy("name").agg(avg("age")).show()
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Spark’s Structured APIs

❖ Spark now knows exactly what we wish to do: group people by their 

names, aggregate their ages, and then compute the average age of all 

people with the same name.

❖ Spark can inspect or parse this query and understand our intention, 

and thus it can optimize or arrange the operations for efficient 

execution. 
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Datasets and DataFrames

❖ A Dataset is a distributed collection of data

➢ provides the benefits of RDDs (e.g., strong typing) with the 

benefits of Spark SQL’s optimized execution engine

➢ A Dataset can be constructed from JVM objects and then 

manipulated using functional transformations (map, flatMap, etc.)

❖ A DataFrame is a Dataset organized into named columns

➢ It is conceptually equivalent to a table in a relational database or a 

data frame in R/Python, but with richer optimizations

➢ An abstraction for selecting, filtering, aggregating and plotting 

structured data

➢ A DataFrame can be represented by a Dataset of Rows

 Scala: DataFrame is simply a type alias of Dataset[Row]

 Java: use Dataset<Row> to represent a DataFrame
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DataFrame API

❖ Spark DataFrames are like distributed in-memory tables with named 

columns and schemas, where each column has a specific data type.

❖ When data is visualized as a structured table, it’s not only easy to 

digest but also easy to work with

The table-like format of a DataFrame
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Difference between DataFrame and RDD

❖ DataFrame more like a traditional database of two-dimensional form, 

in addition to data, but also to grasp the structural information of the 

data, that is, schema

➢ RDD[Person] although with Person for type parameters, but the 

Spark framework itself does not understand internal structure of 

Person class

➢ DataFrame has provided a detailed structural information, making 

Spark SQL can clearly know what columns are included in the 

dataset, and what is the name and type of each column. Thus, 

Spark SQL query optimizer can target optimization
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DataFrame Data Sources

❖ Spark SQL’s Data Source API can read and write DataFrames using a 

variety of formats.

➢ E.g., structured data files, tables in Hive, external databases, or 

existing RDDs

➢ In the Scala API, DataFrame is simply a type alias 

of Dataset[Row]
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Create DataFrames (Scala)

❖ You can create a DataFrame from a Scala object

❖ You can also convert an RDD into a DataFrame

❖ Sometimes we need to import “spark.implicits._” first. The implicits 

object gives implicit conversions for converting Scala objects (incl. 

RDDs) into a Dataset or DataFrame

// Given a list of pairs including names and ages
val data = List(("Brooke", 20), ("Denny", 31), ("Jules", 
30),("TD", 35), ("Brooke", 25))

// Create DataFrame' from a list
val dataDF = spark.createDataFrame(data)

// Given a pair RDD including name and age 
val data = sc.parallelize(Seq(("Brooke", 20), ("Denny", 31), 
("Jules", 30),("TD", 35), ("Brooke", 25)))

// Create DataFrame' from ‘RDD’
val dataDF = spark.createDataFrame(data)
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Create DataFrames (Scala)

❖ Using the above method, we can get the DataFrame as below:

❖ We can see that the schema is not defined, and the columns have no 

meaningful names. To define the names for columns, we can use the 

the toDF() method

❖ We can also write (data could be a list or an RDD):

val dataDF = spark.createDataFrame(data).toDF("name", "age")

val dataDF = data.toDF("name", "age")
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Schemas in Spark

❖ A schema in Spark defines the column names and associated data 

types for a DataFrame

❖ Defining a schema up front offers three benefits

➢ You relieve Spark from the onus of inferring data types.

➢ You prevent Spark from creating a separate job just to read a 

large portion of your file to ascertain the schema, which for a large 

data file can be expensive and time-consuming.

➢ You can detect errors early if data doesn’t match the schema.

❖ Define a DataFrame programmatically with three named columns, 

author, title, and pages

import org.apache.spark.sql.types._
val schema = StructType(Array(StructField("author", StringType, false),
StructField("title", StringType, false),
StructField("pages", IntegerType, false)))
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Spark’s Basic Data Types (Scala)

❖ Spark supports basic internal data types, which can be declared in 

your Spark application or defined in your schema

Data type Value assigned in Scala API to instantiate

ByteType Byte DataTypes.ByteType

ShortType Short DataTypes.ShortType

IntegerType Int DataTypes.IntegerType

LongType Long DataTypes.LongType

FloatType Float DataTypes.FloatType

DoubleType Double DataTypes.DoubleType

StringType String DataTypes.StringType

BooleanType Boolean DataTypes.BooleanType

DecimalType java.math.BigDecimal DecimalType
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Structured and Complex Data Types (Scala)

❖ For complex data analytics, you’ll need Spark to handle complex data 

types, such as maps, arrays, structs, dates, timestamps, fields, etc.

Data type Value assigned in Scala API to instantiate

BinaryType Array[Byte] DataTypes.BinaryType

Timestamp

Type

java.sql.Timestamp DataTypes.TimestampType

DateType java.sql.Date DataTypes.DateType

ArrayType scala.collection.Seq DataTypes.createArrayType(E

lementType)

MapType scala.collection.Map DataTypes.createMapType(ke

yType, valueType)

StructType org.apache.spark.sql.Row StructType(ArrayType[fieldTyp

es])

StructField A value type corresponding 

to the type of this field

StructField(name, dataType, 

[nullable])
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Create DataFrames with Schema (Scala)

❖ We can use spark.createDataFrame(data, schema) to create 

DataFrame, after the schema is defined for the data.

➢ The first argument data must be of type RDD[Row]

➢ The second argument schema must of type StructType

import org.apache.spark.sql.types._
import org.apache.spark.sql._
// Create the schema
val schema = StructType(Array(StructField("name", StringType, 
false), StructField("age", IntegerType, false)))

// Given a list of pairs including names and ages
val data = List(("Brooke", 20), ("Denny", 31), ("Jules", 
30),("TD", 35), ("Brooke", 25))

// Create 'Row' from 'Seq'
val row = Row.fromSeq(data)

// Create 'RDD' from 'Row'
val rdd = spark.sparkContext.makeRDD(List(row))

// Create DataFrame' from ‘RDD’ and the schema
val dataDF = spark.createDataFrame(rdd, schema)
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Create DataFrames with Schema (Scala)

❖ In order to convert the List to RDD[Row], you can also do as below

❖ You can also create a DataFrame from a json file:

import org.apache.spark.sql.types._
import org.apache.spark.sql._

// Create the schema
val schema = StructType(Array(StructField("name", StringType, 
false), StructField("age", IntegerType, false)))

// Given a list of pairs including names and ages
val data = List(("Brooke", 20), ("Denny", 31), ("Jules", 
30),("TD", 35), ("Brooke", 25))

// Create 'RDD' from ‘List'
val rdd = spark.sparkContext.parallelize(data)

// Transform the pair (String, Integer) to a Row object
val rddRow = rdd.map(x => Row(x._1, x._2))

// Create DataFrame' from ‘RDD’ and the schema
val dataDF = spark.createDataFrame(rddRow, schema)

val blogsDF = spark.read.schema(schema).json(jsonFile)
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Spark’s Basic Data Types (Python)

❖ Spark supports basic internal data types, which can be declared in 

your Spark application or defined in your schema

Data type Value assigned in Python API to instantiate

ByteType int DataTypes.ByteType

ShortType int DataTypes.ShortType

IntegerType int DataTypes.IntegerType

LongType int DataTypes.LongType

FloatType float DataTypes.FloatType

DoubleType float DataTypes.DoubleType

StringType str DataTypes.StringType

BooleanType bool DataTypes.BooleanType

DecimalType decimal.Decimal DecimalType
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Structured and Complex Data Types (Python)

❖ For complex data analytics, you’ll need Spark to handle complex data 

types, such as maps, arrays, structs, dates, timestamps, fields, etc.

Data type Value assigned in Python API to instantiate

BinaryType bytearray BinaryType()

Timestamp

Type

datetime.datetime TimestampType()

DateType datetime.date DateType()

ArrayType List, tuple, or array ArrayType(dataType, 

[nullable])

MapType dict MapType(keyType, 

valueType, [nullable])

StructType List or tuple StructType([fields])

StructField A value type corresponding 

to the type of this field

StructField(name, dataType, 

[nullable])
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Create DataFrames with Schema (Python)

❖ A PySpark DataFrame can be created via 

pyspark.sql.SparkSession.createDataFrame typically by passing a list 

of lists, tuples, dictionaries and pyspark.sql.Rows, a pandas 

DataFrame and an RDD consisting of such a list.

❖ You can Create a PySpark DataFrame with an explicit schema.

❖ You can create a PySpark DataFrame from an RDD consisting of a list 

of tuples.

// Given a pair RDD including name and age 
data = sc.parallelize([("Brooke", 20), ("Denny", 31), ("Jules", 
30),("TD", 35), ("Brooke", 25)])

// Create DataFrame' from an RDD
dataDF = spark.createDataFrame(data, schema=["name","age"])

// Given a list of pairs including names and ages
data = [("Brooke", 20), ("Denny", 31), ("Jules", 30),("TD", 35), 
("Brooke", 25)]

// Create DataFrame' from a list
dataDF = spark.createDataFrame(data, schema = "name string, age 
int")
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Create DataFrames with Schema (Python)

❖ You can also create a PySpark DataFrame from a list of rows

❖ You can print out the schema of a DataFrame

❖ The top rows of a DataFrame can be displayed using 

DataFrame.show().

❖ All the DataFrame APIs are listed here: 

https://spark.apache.org/docs/latest/api/python/reference/pyspark.sql/

dataframe.html

from pyspark.sql import Row

// Given a list of rows containing names and ages
data = [Row(name = "Brooke", age = 20), Row(name = "Denny", age = 
31), Row(name = "Jules", age = 30), Row(name = "TD", age = 35), 
Row(name = "Brooke", age = 25)]

// Create DataFrame' from a list of Rows
dataDF = spark.createDataFrame(data)

https://spark.apache.org/docs/latest/api/python/reference/pyspark.sql/dataframe.html
https://spark.apache.org/docs/latest/api/python/reference/pyspark.sql/dataframe.html
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Columns

❖ Each column describe a type of field

❖ We can list all the columns by their names, and we can perform 

operations on their values using relational or computational 

expressions

➢ List all the columns

➢ Access a particular column with col and it returns a Column type

➢ We can also use logical or mathematical expressions on columns



5.26

Columns (Python)

❖ withColumn() returns a new DataFrame by adding a column or 

replacing the existing column that has the same name 

❖ All the Columns APIs are listed here: 

https://spark.apache.org/docs/latest/api/python/reference/pyspark.sql/

column.html

https://spark.apache.org/docs/latest/api/python/reference/pyspark.sql/column.html
https://spark.apache.org/docs/latest/api/python/reference/pyspark.sql/column.html
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Rows (Scala)

❖ A row in Spark is a generic Row object, containing one or more 

columns

❖ Row is an object in Spark and an ordered collection of fields, we can 

access its fields by an index starting at 0

❖ Row objects can be used to create DataFrames
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Grouping Data

❖ DataFrame also provides a way of handling grouped data by using the 

common approach, split-apply-combine strategy. It groups the data by 

a certain condition applies a function to each group and then 

combines them back to the DataFrame.

➢ Grouping and then applying the avg() function to the resulting 

groups
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Transformations, Actions, and Lazy Evaluation

❖ Spark DataFrame operations can also be classified into two types: 

transformations and actions.

➢ All transformations are evaluated lazily - their results are not 

computed immediately, but they are recorded or remembered as a 

lineage

➢ An action triggers the lazy evaluation of all the recorded 

transformations
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Narrow and Wide Transformations

❖ Transformations can be classified as having either narrow 

dependencies or wide dependencies

➢ Any transformation where a single output partition can be 

computed from a single input partition is a narrow transformation, 

like filter()

➢ Any transformation where data from other partitions is read in, 

combined, and written to disk is a wide transformation, like 

groupBy()
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WordCount using DataFrame (Scala)

val fileRDD = 
spark.sparkContext.textFile("file:///home/comp9313/inputText")
val wordsDF = fileRDD.flatMap(_.split(" ")).toDF

val countDF = wordsDF.groupBy("Value").count()

countDF.collect.foreach(println)

countDF.write.format(“csv”).save("file:///home/comp9313/output")
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WordCount using DataFrame (Python)

fileRDD = 
spark.sparkContext.textFile("file:///home/comp9313/inputText")

wordsDF = fileRDD.flatMap(lambda x: x.split(" ")).map(lambda x: 
(x, )).toDF("word string")

#or
# from pyspark.sql.types import StringType
# wordsDF = spark.createDataFrame(fileRDD.flatMap(lambda x: 
x.split(" ")), StringType()).withColumnRenamed("value", "word")

countDF = wordsDF.groupBy("word").count()

countDF.show()
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DataSet

❖ Spark 2.0 unified the DataFrame and Dataset APIs as Structured APIs 

with similar interfaces

❖ Datasets take on two characteristics: typed and untyped APIs

❖ Conceptually, you can think of a DataFrame in Scala as an alias for 

Dataset[Row]

❖ The Datasets are strong typed, and so the typed errors can be 

detected during compile-time
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WordCount using DataSet

val fileDS = spark.read.textFile("file:///home/comp9313/inputText")
val wordsDS = fileDS.flatMap(_.split(" "))

val countDF = wordsDS.groupBy(“value").count()

countDF.collect.foreach(println)

countDF.write.format(“csv”).save("file:///home/comp9313/output")
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DataFrames Versus Datasets

❖ If you want to tell Spark what to do, not how to do it, use DataFrames 

or Datasets.

❖ If you want rich semantics, high-level abstractions, and DSL 

operators, use DataFrames or Datasets.

❖ If your processing demands high-level expressions, filters, maps, 

aggregations, computing averages or sums, SQL queries, columnar 

access, or use of relational operators on semi-structured data, use 

DataFrames or Datasets.

❖ If your processing dictates relational transformations similar to SQL-

like queries, use DataFrames.

❖ If you want unification, code optimization, and simplification of APIs 

across Spark components, use DataFrames.

❖ If you want space and speed efficiency, use DataFrames.

❖ More examples of DataFrame usage could be found at: 

https://github.com/databricks/LearningSparkV2 and 

https://sparkbyexamples.com/pyspark-tutorial/ 

https://github.com/databricks/LearningSparkV2
https://sparkbyexamples.com/pyspark-tutorial/
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Standalone Appliation (Scala)

import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.functions._

object WordCount {
def main(args: Array[String]) {    
val inputFile = args(0)
val outputFolder = args(1)
val spark = 

SparkSession.builder.appName("WordCount").getOrCreate()

import spark.implicits._
val fileRDD = spark.sparkContext.textFile(inputFile)

val wordsDF = fileRDD.flatMap(_.split(" ")).toDF

val countDF = wordsDF.groupBy(“value").count()

countDF.write.format("csv").save(outputFolder)
spark.stop()

}
}
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Part 2: Spark SQL
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Spark SQL Overview

❖ Part of the core distribution since Spark 1.0, Transform RDDs using 

SQL in early versions (April 2014) 

❖ Tightly integrated way to work with structured data (tables with 

rows/columns)

❖ Data source integration: Hive, Parquet, JSON, and more

❖ Spark SQL is not about SQL. 

➢ Aims to Create and Run Spark Programs Faster:
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Spark Programming Interface



5.40

Starting Point: SparkSession

❖ The entry point into all functionality in Spark is the SparkSession class

➢ Scala

➢ Python

➢ SparkSession since Spark 2.0 provides built-in support for Hive 

features including the ability to write queries using HiveQL, access 

to Hive UDFs, and the ability to read data from Hive tables

import org.apache.spark.sql.SparkSession

val spark = SparkSession
.builder()
.appName("Spark SQL basic example")
.config("spark.some.config.option", "some-value")
.getOrCreate()

// For implicit conversions like converting RDDs to DataFrames
import spark.implicits._

from pyspark.sql import SparkSession

spark = SparkSession.builder.master("local").appName("Spark SQL 
basic example").getOrCreate()
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Creating DataFrames from JSON

❖ With a SparkSession, applications can create DataFrames based on 

the content of a JSON file:

val df = 
spark.read.json("examples/src/main/resources/people.json")

// Displays the content of the DataFrame to stdout

df.show()
// +----+-------+
// | age|   name|
// +----+-------+
// |null|Michael|
// |  30|   Andy|
// |  19| Justin|
// +----+-------+
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Running SQL Queries Programmatically

❖ The sql function on a SparkSession enables applications to run SQL 

queries programmatically and returns the result as a DataFrame.

// Register the DataFrame as a SQL temporary view
df.createOrReplaceTempView("people")

val sqlDF = spark.sql("SELECT * FROM people")
sqlDF.show()
// +----+-------+
// | age|   name|
// +----+-------+
// |null|Michael|
// |  30|   Andy|
// |  19| Justin|
// +----+-------+
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Global Temporary View

❖ Temporary views in Spark SQL are session-scoped and will disappear 

if the session that creates it terminates

❖ Global temporary view: a temporary view that is shared among all 

sessions and keep alive until the Spark application terminates

❖ Global temporary view is tied to a system preserved database 

global_temp, and we must use the qualified name to refer it, e.g. 

SELECT * FROM global_temp.view1
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Global Temporary View Example

// Register the DataFrame as a global temporary view
df.createGlobalTempView("people")

// Global temporary view is tied to a system preserved database `global_temp`
spark.sql("SELECT * FROM global_temp.people").show()
// +----+-------+
// | age|   name|
// +----+-------+
// |null|Michael|
// |  30|   Andy|
// |  19| Justin|
// +----+-------+

// Global temporary view is cross-session
spark.newSession().sql("SELECT * FROM global_temp.people").show()
// +----+-------+
// | age|   name|
// +----+-------+
// |null|Michael|
// |  30|   Andy|
// |  19| Justin|
// +----+-------+

Find full example code at 

https://github.com/apache/spark/blob/master/examples/src/main/scala/org/apache/sp

ark/examples/sql/SparkSQLExample.scala

https://github.com/apache/spark/blob/master/examples/src/main/scala/org/apache/spark/examples/sql/SparkSQLExample.scala
https://github.com/apache/spark/blob/master/examples/src/main/scala/org/apache/spark/examples/sql/SparkSQLExample.scala
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Spark SQL Built-in Functions

❖ Spark SQL provides several built-in standard functions 

org.apache.spark.sql.functions to work with DataFrame/Dataset and 

SQL queries. All these Spark SQL Functions return 

org.apache.spark.sql.Column type.

➢ String Functions

➢ Date & Time Functions

➢ Collection Functions

➢ Math Functions

➢ Aggregate Functions

➢ Window Functions

➢ You can check the examples of these functions at: 

https://spark.apache.org/docs/latest/api/sql/index.html

❖ In order to use these SQL Standard Functions, you need to import 

below packing into your application.

from pyspark.sql.functions import *

https://spark.apache.org/docs/latest/api/sql/index.html
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WordCount using Spark SQL (Python)

fileDF = spark.read.text("file:///home/comp9313/inputText")

from pyspark.sql.functions import *
wordsDF = fileDF.select(explode(split(fileDF.value, ' 
')).alias("word"))

countDF = wordsDF.groupBy(wordsDF.word).count()
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Error Detection of Structured APIs

❖ If you want errors caught during compilation rather than at runtime, 

choose the appropriate API
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Vision - one stack to rule them all
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Part 3: DataFrame and Spark SQL 

Practices
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RDD

❖ Problem: Given a collection of documents, compute the average 

length of words starting with each letter. 

textFile = sc.textFile(inputFile)

words = textFile.flatMap(lambda line: line.split(" ")).map(lambda x: x.lower())

counts = words.filter(lambda x: len(x) >=1 and x[0]<='z' and x[0]>='a').map(lambda x: 

(x[0], (len(x), 1)))

avgLen = counts.reduceByKey(lambda a, b: (a[0]+b[0], a[1]+b[1])).map(lambda x: 

(x[0], x[1][0]/x[1][1]))

avgLen.foreach(lambda x: print(x[0], x[1]))
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DataFrame

❖ Problem: Given a collection of documents, compute the average 

length of words starting with each letter. 

textFile = spark.sparkContext.textFile(inputFile)

    

wordsDF = textFile.flatMap(lambda x: x.split(" ")).map(lambda x: (x, )).toDF("word 

string").withColumn("word", lower(col("word")))

wordsDF = wordsDF.filter(length(col("word")) >=1).filter((col("word").substr(0,1)<= 'z') 

& (col("word").substr(0,1)>='a'))

pairDF = wordsDF.select(wordsDF.word.substr(0, 1), 

length(wordsDF.word)).toDF("letter", "length")

    

countsDF = pairDF.groupBy("letter").agg(count("letter").alias("totalCount"), 

sum("length").alias("totalLength"))

avgDF = countsDF.withColumn("ratio", 

countsDF.totalLength/countsDF.totalCount).select("letter", "ratio").orderBy("letter")    

avgDF.write.format("csv").save(outputFolder)
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Spark SQL

❖ Problem: Given a collection of documents, compute the average 

length of words starting with each letter. 

fileDF = spark.read.text(inputFile)

    

fileDF.selectExpr("explode(split(value, ' ')) as 

word").createOrReplaceTempView("words")

spark.sql("select * from words where length(word)>=1 and substr(word, 0, 1)>='a' and 

substr(word, 0, 1)<='z' ").createOrReplaceTempView("filteredwords")

spark.sql("select substr(word, 0, 1) as letter, length(word) as length from 

filteredwords").createOrReplaceTempView("pair")

spark.sql("select letter, sum(length) as totalLength, count(*) as totalCount from pair 

group by letter").createOrReplaceTempView("count")

avgDF = spark.sql("select letter, totalLength/totalCount as ratio from count order by 

letter")

avgDF.write.format("csv").save(outputFolder)
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PySpark Standalone Code (RDD)

from pyspark import SparkContext, SparkConf
import sys

class WordCount:
def run(self, inputPath, outputPath):

conf = SparkConf().setAppName("word count").setMaster("local[3]")
sc = SparkContext(conf=conf)

fileRDD = sc.textFile(inputPath)
wordsRDD = fileRDD.flatMap(lambda line: line.lower().split())  
pairsRDD = wordsRDD.map(lambda word: (word, 1))
countRDD = pairsRDD.reduceByKey(lambda a, b: a+b)

countRDD.saveAsTextFile(outputPath)
sc.stop()

if __name__ == "__main__":
if len(sys.argv) != 3:

print("Wrong inputs")
sys.exit(-1)

WordCount().run(sys.argv[1], sys.argv[2])
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PySpark Standalone Code (RDD)

❖ We first need to create a SparkContext object sc

➢ You can utilize the SparkConf object to configure your task

➢ You can also write sc = SparkContext("local", "WordCount")

❖ Parameters for setMaster:

➢ local(default) - run locally with only one worker thread (no parallel)

➢ local[k] - run locally with k worker threads

➢ spark://HOST:PORT - connect to Spark standalone cluster URL

➢ mesos://HOST:PORT - connect to Mesos cluster URL

➢ yarn - connect to Yarn cluster URL

 Specified in SPARK_HOME/conf/yarn-site.xml
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PySpark Standalone Code (RDD)

❖ The input and output could be on HDFS or on your local file system

➢ We receive them from the command line

 spark-submit wordcount.py file:///home/comp9313/pg100.txt 

file:///home/comp9313/outuput

 spark-submit wordcount.py 

hdfs:///localhost:9000/user/comp9313/input and 

hdfs:///localhost:9000/user/comp9313/output

❖ We can use the RDD textFile() operation to read the data into an RDD

❖ We can use RDD saveAsTextFile() operation to write the data to disk

➢ The result contains parentheses by default

➢ You can format the output and then save to file

❖ Remember to release the resources by sc.stop() finally
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PySpark Standalone Code (DataFrame)

from pyspark.sql.session import SparkSession
from pyspark.sql.functions import *
import sys

class WordCount:
def run(self, inputPath, outputPath):

spark = SparkSession.builder.master("local").appName("word 
count").getOrCreate()

fileDF = spark.read.text(inputPath)
wordsDF = fileDF.selectExpr("explode(split(value, ' ')) as 

word").withColumn("word", lower(col("word")))        

countDF = wordsDF.groupBy("word").count()
countDF.write.format("csv").save(outputPath)
#resDF = countDF.select(concat(col("word"), lit(","), col("count")))
#resDF.write.text(outputPath)
spark.stop()

if __name__ == "__main__":
if len(sys.argv) != 3:

print("Wrong inputs")
sys.exit(-1)

WordCount().run(sys.argv[1], sys.argv[2])
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PySpark Standalone Code (DataFrame)

❖ We first need to create a SparkSession object spark

➢ You can utilize the SparkSession.builder to configure your task: 

spark = SparkSession.builder.master("local").appName("word 

count").getOrCreate()

❖ The input and output could be on HDFS or on your local file system

❖ Remember to release the resources by spark.stop() finally

❖ pyspark.sql.DataFrame.selectExpr projects a set of SQL expressions 

and returns a new DataFrame

>>>df = spark.createDataFrame([
(2, "Alice"), (5, "Bob")], schema=["age", "name"])

>>>df.selectExpr("age * 2", "abs(age)").show()
+---------+--------+
|(age * 2)|abs(age)|
+---------+--------+
|        4|       2|
|       10|       5|
+---------+--------+
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PySpark Standalone Code (DataFrame)

❖ We can use the pyspark.sql.DataFrameReader.text() operation to 

read the text data into a DataFrame

➢ pyspark.sql.DataFrameReader.csv()

➢ pyspark.sql.DataFrameReader.json()

➢ https://spark.apache.org/docs/latest/api/python/reference/pyspark.

sql/io.html

❖ We can use pyspark.sql.DataFrameWriter.text() to write a DataFrame

with a single column of string type to a file

❖ We can use pyspark.sql.DataFrameWriter.csv() or 

pyspark.sql.DataFrameWriter.format("csv").save() to store the data as 

a csv file

➢ You can also use other formats such as json

➢ You can also use 

pyspark.sql.DataFrameWriter.format("text").save(), but it also 

requires a DataFrame with a single column of string type
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Pass a Function to RDD Operations

❖ For a given text file, find the longest word from each line.

from pyspark import SparkContext, SparkConf
import sys

def findlongest(termList):
maxTerm = ""
for t in termList:

if len(t) > len(maxTerm):
maxTerm = t

return maxTerm

class WordCount:
def run(self, inputPath, outputPath):

sc = SparkContext("local", "longest")
fileRDD = sc.textFile(inputPath)
wordsRDD = fileRDD.map(lambda line: line.lower().split())
longestRDD = wordsRDD.map(lambda termList: findlongest(termList))
longestRDD.saveAsTextFile(outputPath)
sc.stop()

if __name__ == "__main__":
if len(sys.argv) != 3:

print("Wrong inputs")
sys.exit(-1)

WordCount().run(sys.argv[1], sys.argv[2])
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Define Your Own Function with UDF

❖ PySpark UDF (a.k.a User Defined Function) is the most useful feature 

of Spark SQL & DataFrame that is used to extend the PySpark build in 

capabilities.

❖ PySpark UDF’s are similar to UDF on traditional databases. In 

PySpark, you create a function in a Python syntax and wrap it with 

PySpark SQL udf() or register it as udf and use it on DataFrame and 

SQL respectively.

❖ https://sparkbyexamples.com/pyspark/pyspark-udf-user-defined-

function

https://sparkbyexamples.com/pyspark/pyspark-udf-user-defined-function
https://sparkbyexamples.com/pyspark/pyspark-udf-user-defined-function
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Pass a Function to DataFrame Operations

❖ For a given text file, find the longest word from each line.

from pyspark.sql.session import SparkSession
from pyspark.sql.functions import *
import sys

def findlongest(termList):
maxTerm = ""
for t in termList:

if len(t) > len(maxTerm):
maxTerm = t

return maxTerm

class WordCount:
def run(self, inputPath, outputPath):

spark = SparkSession.builder.master("local").appName(“longest").getOrCreate()
fileDF = spark.read.text(inputPath)
wordsDF = fileDF.select(split(fileDF.value, ' ').alias('termlist'))
longestUDF = udf(lambda termList: findlongest(termList))
resDF = wordsDF.withColumn('longest', longestUDF('termlist')).select('longest')
resDF.write.text(outputPath)
spark.stop()

if __name__ == "__main__":
if len(sys.argv) != 3:

print("Wrong inputs")
sys.exit(-1)

WordCount().run(sys.argv[1], sys.argv[2])
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Project 2

❖ we are still going to use the dataset of Australian news from ABC. 

Your task is to find out the top-k most frequent co-occurring term pairs 

in each year. The co-occurrence of (w, u) is defined as: u and w 

appear in the same article headline (i.e., (w, u) and (u, w) are treated 

equally).

❖ You need to ignore the stop words such as “to”, “the”, and “in”. A stop 

words list will be provided.

20030219,council chief executive fails to secure position

20030219,council welcomes ambulance levy decision

20030219,council welcomes insurance breakthrough

20030219,fed opp to re introduce national insurance

20040501,cowboys survive eels comeback

20040501,cowboys withstand eels fightback

20040502,castro vows cuban socialism to survive bush

20200401,coronanomics things learnt about how coronavirus economy

20200401,coronavirus at home test kits selling in the chinese community

20200401,coronavirus campbell remess streams bear making classes

20201015,coronavirus pacific economy foriegn aid china

20201016,china builds pig apartment blocks to guard against swine flu
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Project 2

❖ Please get the terms from the dataset as below:

➢ Split the headlines using the space character

➢ Ignore the stop words such as “to”, “the”, and “in”.

➢ Ignore terms starting with non-alphabetical characters, i.e., only 

consider terms starting with “a” to “z”.

❖ Your output should be in format of (No. of years * k) lines

➢ Sort the results first by years in ascending order

➢ Within each year, sort the pairs by their frequencies first, then by 

the pairs in alphabetical order
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Project 2

❖ Key evaluation points:

➢ Co-occurrence counting

➢ Pass a function to RDD/DataFrame operations

➢ Efficient top-k computation

➢ Data sorting order

➢ Data output format
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End of Chapter 5.1
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